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Welcome to Apache Hamilton

Apache Hamilton Join HamiltonOS Follow | downloads 1M downloads/month 109k

Apache Hamilton (incubating) is a general-purpose framework to write dataflows using regular
Python functions. At the core, each function defines a transformation and its parameters indicates
its dependencies. Apache Hamilton automatically connects individual functions into a Directed
Acyclic Graph (DAG) that can be executed, visualized, optimized, and reported on. Apache Hamilton
also comes with a Ul to visualize, catalog, and monitor your dataflows.

def A(external_input: int) — int:

nmnn mmnn

return external_input % 3

def B(A: int) — float:

nmnn nmnn

return A / 3

def C(A: int, B: float) — float:

nmnn mnmnn

return A ** 2 x B

The ABC of Apache Hamilton

Why should you use Apache
Hamilton (incubating)?

Facilitate collaboration. By focusing on functions, Apache Hamilton avoids sprawling code
hierarchy and generates flat dataflows. Well-scoped functions make it easier to add features,
complete code reviews, debug pipeline failures, and hand-off projects. Visualizations can be
generated directly from your code to better understand and document it. Integration with the
Apache Hamilton Ul allows you to track lineage, catalog code & artifacts, and monitor your
dataflows.


https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
https://twitter.com/hamilton_os
https://twitter.com/hamilton_os
https://pepy.tech/project/sf-hamilton
https://pepy.tech/project/sf-hamilton
https://pepy.tech/project/sf-hamilton
https://pepy.tech/project/sf-hamilton
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Directed_acyclic_graph
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/abc.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/abc.png

Reduce development time. Apache Hamilton dataflows are reusable across projects and context
(e.g., pipeline vs. web service). The benefits of developing robust and well-tested solutions are
multiplied by reusability. Explore community-contributed dataflows in the ecosystem.

Own your platform. Apache Hamilton helps you integrate the frameworks and tools of your stack.
Apache Hamilton’s features are easy to extend and customize to your needs. This flexibility
enables self-serve designs and ultimately reduces the risks of vendor lock-in.

Scale your dataflow. Apache Hamilton separates transformation logic from execution, allowing
you to seamlessly scale via remote execution (AWS, Modal, etc.) and specialized computation
engines (Spark, Ray, duckdb etc.). Apache Hamilton was battle tested under intensive enterprise

data workloads.

Here's a quick overview of benefits that Apache Hamilton provides as compared to other tools:

Feature

Execute a graph of data
transformations

Can visualize lineage easily

Can model GenerativeAl/
LLM based workflows

Is a feature store

Helps you structure your
code base

Is just a library

Runs anywhere python
runs

Documentation friendly

Apache
Hamilton

Macro  orchestration
systems (e.g. Airflow)

Feast

dbt

Dask



Apache Macro orchestration

Feature Hamilton systems (e.g. Airflow) Feast dbt Dask

Code is always unit X X X X

testable

Architecture Overview

The following diagram gives a simplified overview of the main components of Apache Hamilton.

Module

. >
Provide functions Execute Build results -

via modules (Dict, DataFrame, custom)

Display FunctionGraph -
N

Functions & Module. Transformations are regular Python functions organized into modules.
Functions must be type-annotated, but hold no dependency with Apache Hamilton and can be
reused outside of it.

Functions

Driver & FunctionGraph. The bDriver will automatically assemble the FunctionGraph from the
modules given. The briver can be configured to modify and extend the execution behavior (e.g,
remote execution, monitoring, webhooks, caching).

Visualization. The FunctionGraph can be visualized without executing code. This coupling ensures
visualizations always match the code from modules.



Execution. When requesting variables, the briver establishes an execution plan to only compute
the required functions. Then, results are gathered and returned to the user.

Who is using Apache Hamilton?
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Multiple companies are doing cool stuff with Apache Hamilton! Come chat with members of the
community and the development team on Slack:

- Wealth.com - Async Python LLM document processing pipelines
- Wren.ai - Async RAG pipelines

- Oxehealth - Multi-modal prediction

- PupPilot - Async python LLM transcript processing pipelines

- Stitch Fix — Time series forecasting

- British cycling — Telemetry analysis

- Joby - Flight data processing

- Transfix - Online featurization and prediction

- IBM - Internal search and ML pipelines

- Ascena - Feature engineering


https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g

- Adobe - Prompt engineering research

- Axiom Cloud - 0T data processing

- Oak Ridge & PNNL - Naturf project

- Habitat - Time-series feature engineering

- UK Government Digital Service - National feedback pipeline (processing & analysis)
- Railoify - Orchestrate pandas code

- Lexis Nexis - Feature processing and lineage
- Opendoor - Manage PySpark pipelines

- KI - Feature engineering

- Kora Money - DS/ML Workflows

- Capitec Bank - Financial decisions

- Best Egg - Feature engineering


https://github.com/IMMM-SFA/naturf/tree/feature/nodes

- RTV Euro AGD - General feature engineering & machine learning
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"Apache Hamilton provides a modular and
compatible framework that has significantly
empowered our data science team. We've
been able to build robust and flexible data
pipelines with ease. The documentation is
thorough and regularly updated... Even with
no prior experience with the package, our
team successfully migrated one of our legacy
data pipelines to the Apache Hamilton
structure within a month. This transition has
greatly enhanced our productivity, enabling
us to focus more on feature engineering and
model iteration while Apache Hamilton's DAG
approach seamlessly manages data lineage.
I highly recommend Apache Hamilton to data
professionals looRing for a reliable,
standardized solution for creating and
managing data pipelines.”

Yuan Liu

DS, Kora Financial

"How (with good software practices) do you
orchestrate a system of asynchronous LLM
calls, but where some of them depend on
others? How do you build such a system so

that it's modular and testable? At wealth.com
we've selected Apache Hamilton to help us
solve these problems and others. And today
our product, Ester Al, an Al legal assistant

that extracts information from estate
planning documents, is running in
production with Apache Hamilton under the
hood."

Kyle Pounder
CTO, Wealth.com



"Apache Hamilton is simplicity. Its declarative
approach to defining pipelines (as well as the
Ul to visualize them) makes testing and
modifying the code easy, and onboarding is
quick and painless. Since using Apache
Hamilton, we have improved our efficiency of
both developing new functionality and
onboarding new developers to work on the
code. We deliver solutions more quicRly than
before."

Michat Siedlaczek
Senior DS/SWE, IBM

".The companion Apache Hamilton Ul has
taken the value proposition up enormously
with the ability to clearly show lineage &
track execution times, covering a major part
of our observability needs"

Fran Boon

Director, Oxehealth.com

"Many thanks to writing such a great library.
We are very excited about it and very pleased
with so many decisions you've made. JA,"

Louwrens

Software Engineer, luoautomation.com
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Get Started

Welcome to Apache Hamilton’s documentation!

www.tryhamilton.dev

Before diving in, we highly recommend you try Apache Hamilton in your browser at https://
www.tryhamilton.dev. It allows you to:

1. run python in the browser, so you can get a feel for the basics of Apache Hamilton
without installing anything!

2.itincludes various examples that you can run and modify.

3. it represents an easy hands-on introduction to Apache Hamilton that should get
you comfortable with the framework and its basic capabilities.

Get started with Apache Hamilton locally

The following section of the docs will teach you how to install Apache Hamilton and get started
with your own project.

Why use Apache Hamilton?

There are many choices for building dataflows/pipelines/workflows/ETLs. Let's compare Apache
Hamilton to some of the other options to help answer this question.

Comparison to Other Frameworks

There are a lot of frameworks out there, especially in the pipeline space. This section should help
you figure out when to use Apache Hamilton with another framework, or in place of a framework,
or when to use another framework altogether.

Let's go over some groups of “competitive” or “complimentary” products. For a basic overview, see
the product matrix on the homepage.


https://www.tryhamilton.dev
https://www.tryhamilton.dev

Get Started

Orchestration Systems
Examples include:

- Airflow

- Metaflow
- Luigi

- dbt

Apache Hamilton is not, in itself a macro, i.e. high level, task orchestration system. While it does
orchestrate functions, and the DAG abstraction is very powerful, it does not provision compute, or
schedule long-running jobs. Apache Hamilton works well in conjunction with these macro
systems. Apache Hamilton provides the capabilities of fine-grained lineage, highly readable code,
and self-documenting pipelines, which many of these systems lack.

Apache Hamilton can be used within any python orchestration system in the following ways:

1. Hamilton DAGs can be called within orchestration system tasks. See the Apache Hamilton +
Airflow example. The integration is generally trivial — all you have to do is call out to the
hamilton library within your task. If your orchestrator supports python, then you're good to go.
Some pseudocode (if your orchestrator handles scripts like airflow):

#my_task.py

import hamilton

import my_transformations

dr = hamilton.driver.Driver({}, my_functions)
output = dr.execute(['final_var'], inputs=...)
do_something_with(output)

2. Hamilton DAGs can be broken up to run as components within an orchestration system. With
the ability to include overrides, you can run the DAG on each task, overloading the outputs of
the last task + any static inputs/configuration, and pass it into the next task. This is more of a
manual/power-user feature. Some pseudocode:

#my_task.py
import hamilton
import my_functions
prior_inputs = load_relevant_task_results()
desired_outputs = ['final_var_1', 'final_var_2']
inputs = my_inputs
dr = hamilton.driver.Driver({}, my_functions)
output = dr.execute(

desired_outputs,

inputs=inputs,


https://airflow.apache.org/
https://github.com/Netflix/metaflow
https://github.com/spotify/luigi
https://www.getdbt.com/
https://blog.dagworks.io/p/supercharge-your-airflow-dag-with
https://blog.dagworks.io/p/supercharge-your-airflow-dag-with
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overrides=prior_inputs)
save_for_later(output)

Feature Stores
Examples include:

- Hopsworks
- Feast
- Tecton

One can think of Apache Hamilton as a being your “feature definition store”, where “store” is code
+ git. While it does not provide all the capabilities of a standard feature store, it provides a source
of truth for the code that generated the features, and can be run in a portable method. So, if your
desire is just to be able to run the same code in different environments, and have an online/
offline store of features, you can use hamilton both to save the features offline, and generate
features online on the fly.

See the feature engineering example for more possibilities, as well as blogs on the feature topic.

Note that in small cases, you probably don't need a true feature store - recomputing derived
features in an ETL and online can be very efficient, as long as you have some database to look
values up (or have them passed in).

Also note that joins and aggregations can get tricky. We often recommend using our “polymorphic
function definition” i.e. functions decorated with @config.when, to either load up the non-online-
friendly features from a feature store or do an external lookup to simulate an online join.

We expect Apache Hamilton to play a prominent role in the way feature stores work in the future.

Data Science Ecosystems/ML platforms
Examples include:

- Kedro

- Domino Data Labs

- Dataiku

- SageMaker

- Google Cloud Vertex Al Platform

- etc.


https://www.hopsworks.ai/
https://feast.dev/
https://tecton.ai/
https://blog.dagworks.io/?sort=search&amp;search=features
https://kedro.org/
https://www.dominodatalab.com/
https://www.dataiku.com/
https://aws.amazon.com/sagemaker/
https://cloud.google.com/vertex-ai
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We've kind of grouped a whole suite of platforms into the same bucket here. These tend to have a
lot of capabilities all related to ML. Apache Hamilton can be used in conjunction with these
platforms in a variety of ways. For example, you can use Apache Hamilton to generate features for
a model that you train in one of these platforms. Or you can use Apache Hamilton to generate a
model using the platform’s compute, and then save the model to the platform’s registry.

Registries / Experiment Tracking
Examples include:

- MLflow
- Weights and Biases
- DVC

Most pipelines have a “reverse ETL problem” — they need to get the results of the pipeline into a
some sort of datastore or registry. Apache Hamilton can be used in conjunction with these tools
as the glue code that helps everything work together. For example, you can use Apache Hamilton
to generate a model and then store metrics computed by Apache Hamilton to one of these
“destinations”.

There are three main ways to integrate with these tools:
- inside a function that Apache Hamilton orchestrates
- outside Apache Hamilton (e.g. in a script that calls Apache Hamilton)
- using “materializers” (see materializers) (see this blog).

See this ML reference post for examples of how to use Apache Hamilton with these tools.

Python Dataframe/manipulation Libraries
Examples include:

- pandas
- dask

- modin
- polars
- duckdb

Apache Hamilton works with any python dataframe/manipulation oriented libraries. See our
examples folder to see how to use Apache Hamilton with these libraries.


https://mlflow.org/
https://wandb.ai/site
https://dvc.org/
https://blog.dagworks.io/p/separate-data-io-from-transformation
https://blog.dagworks.io/p/from-dev-to-prod-a-ml-pipeline-reference
https://pandas.pydata.org/
https://www.dask.org/
https://github.com/modin-project/modin
https://www.pola.rs/
https://duckdb.org/
https://github.com/apache/hamilton/tree/main/examples
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Python “big data” systems
The following systems are ones that you would resort to using when wanting to scale up your data
processing.

Examples include:
- dask

- ray

- pyspark

- pandas-on-spark

These all provide capabilities to either (a) express and execute computation over datasets in
python or (b) parallelize it. Often both. Apache Hamilton has a variety of integrations with these
systems. The basics is that Apache Hamilton can make use of these systems to execute the DAG
using the GraphAdapter abstraction and Lifecycle Hooks.

See our examples folder to see how to use Apache Hamilton with these systems.

Installing hamilton is easy!

Install

Apache Hamilton is a lightweight framework with a variety of extensions/plugins. To get started,
you'll need the following:

* python >= 3.10

* pip

For help with python/pip/managing virtual environments see the python docs.

Installing with pip

Apache Hamilton is published on pypi under sf-hamilton . To install, run:
pip install sf-hamilton

To use the DAG visualization functionality, instead install with

pip install sf-hamilton[visualization]

Note: for visualization you may additionally need to install graphviz externally — see graphviz for
instructions on the correct way for your operating system.


https://www.dask.org/
https://ray.io/
https://spark.apache.org/docs/latest/api/python/
https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html
https://github.com/apache/hamilton/tree/main/examples
https://docs.python.org/3/tutorial/venv.html/
https://pypi.org/project/sf-hamilton/
https://graphviz.org/download/
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Installing with conda

Apache Hamilton is also available on conda if you prefer:

conda install -c hamilton-opensource sf-hamilton

Installing from source

You can also download the code and run it from the source.

git clone https://github.com/apache/hamilton.git
cd hamilton
pip install -e .

Your First Dataflow

Let's get started with a dataflow that computes statistics on a time-series of marketing spend.

We're jumping in head-first. If you want to start with an overview, skip ahead to Concepts.

You can follow along in the examples directory of the hamilton repo. We highly recommend
forking the repo and playing around with the code to get comfortable.

Write transformation functions

Create a file my_functions.py and add the following two functions:

import pandas as pd

def avg 3wk_spend(spend: pd.Series) -> pd.Series:
"""Rolling 3 week average spend."""
return spend.rolling(3).mean()

def acquisition_cost(avg_3wk_spend: pd.Series, signups: pd.Series) -
> pd.Series:

"""The cost per signup in relation to a rolling average of
spend."""

return avg _3wk_spend / signups


https://github.com/apache/hamilton/tree/main/examples/hello_world
https://github.com/apache/hamilton/
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An astute observer might ask the following questions:

1.

Why do the parameter names clash with the function names? This is core to how hamilton
works. It utilizes dependency injection to create a DAG of computation. Parameter names tell
the framework where your function gets its data.

. OK, if the parameter names determine the source of the data, why have we not defined

defined “spend” or “signups’ as functions? This is OK, as we will provide this data as an input
when we actually want to materialize our functions. The DAG doesn’t have to be complete when
itis compiled.

. Why is there no main line to call these functions? Good observation. In fact, we never will call

them (directly)! This is one of the core principles of Apache Hamilton. You write individual
transforms and the rest is handled by the framework. More on that next.

. The functions all output pandas series. What if | don’t want to use series? You don’t have to!

Apache Hamilton is not opinionated on the data type you use. The following are all perfectly
valid as well (and we support dask/spark/ray/other distributed frameworks).

Let's add a few more functions to our my_functions.py file:

def spend_mean(spend: pd.Series) -> float:

"""Shows function creating a scalar. In this case 1t computes the
mean of the entire column."""
return spend.mean()

def spend_zero_mean(spend: pd.Series, spend_mean: float) ->
pd.Series:

"""Shows function that takes a scalar. In this case to zero mean
spend."""

return spend - spend_mean

def spend_std_dev(spend: pd.Series) -> float:
"""Function that computes the standard deviation of the spend

column.
return spend.std()

def spend_zero_mean_unit_variance(spend_zero_mean: pd.Series,
spend_std_dev: float) -> pd.Series:
"""Function showing one way to make spend have zero mean and unit
variance."""

return spend_zero_mean / spend_std_dev

Let's give these functions a spin!
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Run your dataflow

To actually run the dataflow, we'll need to write a driver. Create a my_script.py with the following
contents:

import logging
import sys

import pandas as pd

# We add this to speed up running things if you have a lot in your
python environment.

from hamilton import registry; registry.disable_autoload()

from hamilton import driver, base

import my_functions # we import the module here!

logger = logging.getlLogger(__name_ )
logging.basicConfig(stream=sys.stdout)
if name__ == '__main__
# Instantiate a common spine for your pipeline
index = pd.date_range("2022-01-01", periods=6, freq="w")
initial_columns = { # load from actuals or wherever -- this is
our initial data we use as input.
# Note: these do not have to be all series, they could be
scalar inputs.
'signups': pd.Series([1, 10, 50, 100, 200, 400],
index=1ndex),
'spend': pd.Series([10, 10, 20, 40, 40, 50], index=index),
t

dr = (
driver.Builder()
.with_config({}) # we don't have any configuration or
invariant data for this example.
.with_modules(my_functions)
# we need to tell hamilton where to load function definitions from
.with_adapters(base.PandasDataFrameResult()) # we want a
pandas dataframe as output
.build()
)

# we need to specify what we want in the final dataframe (these
could be function pointers).
output_columns = [
"spend’,
‘signups’,
‘avg_3wk_spend',
'acquisition_cost',

]

# let's create the dataframe!
df = dr.execute(output_columns, inputs=initial_columns)



Get Started

# “pip install sf-hamilton[visualization]  earlier you can also

do
# dr.visualize_execution(output_columns,'./my_dag.png', {})
print(df)

Run the script with the following command:
python my_script.py

And you should see the following output:

spend signups avg_3wk_spend acquisition_cost

2022-01-02 10 1 NaN 10.000
2022-01-09 10 10 NaN 1.000
2022-01-16 20 50 13.333333 0.400
2022-01-23 40 100 23.333333 0.400
2022-01-30 40 200 33.333333 0.200
2022-02-06 50 400 43.333333 0.125

Not only is your spend to signup ratio decreasing exponentially (your product is going viral!), but
you've also successfully run your first Apache Hamilton Dataflow. Kudos!

See, wasn't that quick and easy?

Note: if you're ever like “why are things taking a while to execute?”, then you might have too much
in your python environment and Apache Hamilton is auto-loading all the extensions. You can
disable this by setting the environment variable HAMILTON_AUTOLOAD_EXTENSIONS=0 Or
programmatically via from hamilton import registry; registry.disable_autoload() - for more
see Extension autoloading.

Learning Resources

Several channels are available to get started with Apache Hamilton, learn advanced usage, and
participate in the latest feature development.

. | User Guide Documentation

The user guide gives a complete overview of Apache Hamilton’s features.

= Reference Documentation

The reference documentation details Apache Hamilton’s public API.
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€ Ecosystem & Integrations

The ecosystem page lists all built-in integrations (pandas, Polars, Spark, etc.) and external
community resources. Find reusable dataflows, blog posts, and video tutorials there.

#. tryhamilton.dev

The tryhamilton.dev website provides interactive tutorials in-browser to learn specific Apache
Hamilton concepts.

3 Slack

The Slack channel is the ideal place to ask questions, request features, and give feedback.

&\ Talks & Videos

See the ecosystem page for links to video content and conference talks.
- 2024-02 Apache Hamilton Meet-up for February

o Recording

o [Slides](https://github.com/skrawcz/talks/files/14351139/Apache Hamilton.February.
2024.Meetup.pdf)

- 2023-12  Why you should build your GenAl/LLM apps using Apache Hamilton. AlCamp End of
Year in SF

o Recording

o [Slides](https://github.com/skrawcz/talks/files/13666470/
Why.you.should.build.your.GenAl_LLM.apps.using.Apache Hamilton.pdf)

- 2023-12  Bridging Classic ML Pipelines with the World of LLMs. PyData Global

o Slides

-2023-11  Apache Hamilton: Natively bringing software engineering best practices to python data
transformations. Scale by the Bay.

o Recording

o Slides


https://tryhamilton.dev
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
https://www.youtube.com/watch?v=ks672Lm0CJo.
https://www.aicamp.ai/event/eventdetails/W2023121217
https://www.aicamp.ai/event/eventdetails/W2023121217
https://youtu.be/IwWixrjhkZU?si=DVa72Zr4iD-hibS5&amp;t=7602
https://global2023.pydata.org/cfp/talk/3REDA9/
https://github.com/skrawcz/talks/files/13666479/Bridging.Classic.ML.Pipelines.with.the.World.of.LLMs.1.pdf
https://www.scale.bythebay.io/
https://www.youtube.com/watch?v=gK4-6X0h7PU
https://github.com/skrawcz/talks/files/13969784/Scale.By.The.Bay.-.Hamilton_.Natively.bringing.SWE.best.practices.to.python.data.transformations.pdf
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-2023-09  Apache Hamilton: Natively bringing software engineering best practices to python
data transformations. Bay Area Python Interest Group (BAYPIGgies)

o [Slides](https://github.com/skrawcz/talks/files /12785978 / BayPIGgies_.Apache
Hamilton.Talk.pdf)

- 2023-08 dbt + Apache Hamilton: Enabling you to maintain complex Python within dbt models.
MDSFest'23

o Recording
o Slides

- 2023-06 Apache Hamilton: an OS tool to add to your LLM App toolbelt. LLM Avalanche.
o Slides

-2023-06 Feature Engineering with Apache Hamilton: Portability & Lineage. Budapest ML Forum
June 2023

o Slides

- 2023-06 British Cycling Data Platform in Python. Manchester PyData Meetup
o Slides
o Co-presented with Peter Robinson, and Murray Tait.

- 2023-04 Lightweight Lineage with Apache Hamilton. PyData Seattle

o [Slides](https://github.com/skrawcz/talks/files/11399972/ PyData-Seattl-Lightning-Talk-2023-
Lighweight-Lineage-with-Apache Hamilton.pdf)

-2023-01  Apache Hamilton: Natively bringing software engineering best practices to python
data transformations. Al Camp Meetup San Jose

o Slides

-2022-10  Apache Hamilton: an open source, declarative, micro-framework for clean & robust
feature transform code in Python. Feature Store Summit

o Event

o [Slides](https://github.com/skrawcz/talks/files/9759661/FS.Summit.2022.-. Apache
Hamilton.pdf)


https://www.meetup.com/baypiggies/events/296283989/
https://www.mdsfest.com/
https://www.youtube.com/watch?v=ZM-kM8DqlaQ&amp;list=PLdVpUmZrh0QpDi07ENp3FD5aTFuTTtWnP
https://github.com/skrawcz/talks/files/12431755/dbt.%2B.Hamilton_.Enabling.you.to.maintain.complex.python.within.dbt.models.pdf
https://github.com/skrawcz/talks/files/11899349/Hamilton_.an.OS.tool.to.add.to.your.LLM.App.toolbelt.pdf
https://budapestml.hu/2023/en/
https://budapestml.hu/2023/en/
https://github.com/skrawcz/talks/files/11690901/Stefan_Krawczyk_BudapestTalkJune2023_FeatureEngineeringwith.Hamilton_Portability.Lineage.pdf
https://github.com/skrawcz/talks/files/11899331/PyData.British.Cycling.7.June.2023.pdf
https://github.com/skrawcz/talks/files/10830349/Hamilton_.Natively.bringing.software.engineering.best.practices.to.python.data.transformations.-.January.2023.pdf
https://www.featurestoresummit.com/

Get Started

- 2022-09 Apache Hamilton: enabling software engineering best practices for data
transformations via generalized dataflow graphs. DEco - First International Workshop on Data
Ecosystems

o Event
o Slides

- 2022-09 Apache Hamilton: a modular open source declarative paradigm for high level
modeling of dataflows. CDMS - First International Workshop on Composable Data Management
Systems

o Event
o Slides
o Paper

- 2022-08 Apache Hamilton: A Python Micro-Framework for tidy scalable Pandas. Scalable
Pandas Meetup

o Recording

o [Slides](https://github.com/skrawcz/talks/files/9428705/Apache Hamilton.
%40.Ponder.Pandas.meetup.pdf)

-2022-08 Scalable feature engineering with Apache Hamilton on Ray. Ray Summit

o [Slides](https://github.com/skrawcz/talks/files/9411082/
Submitted.Slides.-.Ray.Summit_.Scalable.feature.engineering.with.Apache
Hamilton.on.Ray.pdf)

- 2022-07 Apache Hamilton: A Python Micro-Framework for Data / Feature Engineering.
MLOPsWorld Bay Area

o Slides

-+ 2022-05  Apache Hamilton: a python micro-framework for data / feature engineering at Stitch
Fix. AlCamp

o Recording

o [Slides](https://github.com/skrawcz/talks/files/8691633/AlCamp.Apache
Hamilton.Presentation.pdf)

+2022-02  [Open Source] Apache Hamilton, a micro framework for creating dataframes, and its
application at Stitch Fix. Apply(Meetup)

o Event.


https://dbis.rwth-aachen.de/DEco22/
https://github.com/skrawcz/talks/files/9550914/Submitted.-.DEco.2022_.Hamilton_.enabling.software.engineering.best.practices.for.data.transformations.via.generalized.dataflow.graphs.1.pdf
https://cdmsworkshop.github.io/2022/
https://github.com/skrawcz/talks/files/9550939/CDMS.2022.-.Hamilton_.a.modular.open.source.declarative.paradigm.for.high.level.modeling.of.dataflows.1.pdf
https://cdmsworkshop.github.io/2022/Proceedings/ShortPapers/Paper6_StefanKrawczyk.pdf
https://www.youtube.com/watch?v=m_rjCzxQj4c&amp;ab_channel=Ponder
https://github.com/skrawcz/talks/files/9213924/Hamilton_.A.Python.Micro-Framework.for.Data._.Feature.Engineering.pdf
https://www.youtube.com/watch?v=PDGIt37dov8
https://www.applyconf.com/agenda/open-source-hamilton-a-micro-framework-for-creating-dataframes-and-its-application-at-stitch-fix/
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o Recording

o Slides

-2021-12  Apache Hamilton an open source micro framework for creating dataframes. SF Python
Meetup

o Recording

o Slides

— | External Blogs
For external resources including blogs, see the ecosystem page. Here are some notable blog posts
about Apache Hamilton:

- 2024-03 RAG: ingestion and chunking using Apache Hamilton and scaling to Ray, Dask, or
PySpark

- 2024-02 A command line tool to improve your development workflow

- 2024-02  Monthly Meetup Recap and office hours

- 2024-02 Using IPython Jupyter Magic commands to improve the notebook experience
- 2024-02 Building a lightweight experiment manager

- 2024-01  Customizing Apache Hamilton’s Execution with the new Lifecycle API

- 2024-01  How well-structured should your data code be?

- 2024-01 From Dev to Prod: a ML Pipeline Reference Post

- 2023-12 Winning over hearts and minds at work: ADKAR my favorite change management
approach

-2023-11 &’ We're launching the Apache Hamilton Dataflow Hub!
- 2023-10  Separate data I/0 from transformation — your future self will thank you.

-2023-09  Retrieval augmented generation (RAG) with Streamlit, FastAPI, Weaviate, and Apache
Hamilton!

-2023-09 LLMOps: Production prompt engineering patterns with Apache Hamilton
- 2023-09 Feature Engineering with Apache Hamilton
- 2023-08 Expressing PySpark Transformations Declaratively with Apache Hamilton

- 2023-08 Containerized PDF Summarizer with FastAPI and Apache Hamilton


https://www.youtube.com/watch?v=CHfrT5OVjlM
https://github.com/skrawcz/talks/blob/main/Public%20ApplyConf2022%20-%20%5BOpen%20Source%5D%20Hamilton%2C%20a%20micro%20framework%20for%20creating%20dataframes%2C%20and%20its%20application%20at%20Stitch%20Fix.pdf
https://www.youtube.com/watch?v=_XUYfwougz4
https://github.com/skrawcz/talks/files/8944605/Python.Meetup.Dec.2021.-.Hamilton_.an.open.source.micro.framework.for.creating.dataframes.pdf
https://blog.dagworks.io/p/rag-ingestion-and-chunking-using
https://blog.dagworks.io/p/rag-ingestion-and-chunking-using
https://blog.dagworks.io/p/a-command-line-tool-to-improve-your
https://blog.dagworks.io/p/monthly-hamilton-meetup-and-office
https://blog.dagworks.io/p/using-ipython-jupyter-magic-commands
https://blog.dagworks.io/p/building-a-lightweight-experiment
https://blog.dagworks.io/p/customizing-hamiltons-execution-with
https://blog.dagworks.io/p/how-well-structured-should-your-data
https://blog.dagworks.io/p/from-dev-to-prod-a-ml-pipeline-reference
https://blog.dagworks.io/p/winning-hearts-and-minds-at-work
https://blog.dagworks.io/p/winning-hearts-and-minds-at-work
https://blog.dagworks.io/p/were-launching-the-hamilton-dataflow
https://blog.dagworks.io/p/separate-data-io-from-transformation
https://blog.dagworks.io/p/retrieval-augmented-generation-reference-arch
https://blog.dagworks.io/p/retrieval-augmented-generation-reference-arch
https://blog.dagworks.io/p/llmops-production-prompt-engineering
https://blog.dagworks.io/p/feature-engineering-with-hamilton
https://blog.dagworks.io/p/expressing-pyspark-transformations
https://blog.dagworks.io/p/containerized-pdf-summarizer-with
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-2023-08 Dynamic DAGs: Counting Stars with Apache Hamilton

- 2023-08 Featurization: Integrating Apache Hamilton with Feast

- 2023-07 Simplify Prefect Workflow Creation and Maintenance with Apache Hamilton

- 2023-07 Building a maintainable and modular LLM application stack with Apache Hamilton
-2023-06 Simplify Airflow DAG Creation and Maintenance with Apache Hamilton

- 2023-05 Lineage + Apache Hamilton in 10 minutes

-2022-11  Apache Hamilton + DBT in 5 minutes

-2022-07 Tidy production pandas with Apache Hamilton

-2022-06 Developing Scalable Feature Engineering DAGs with Metaflow & Apache Hamilton
- 2022-05 Apache Hamilton backstory and intro post on TDS

- 2022-05 Apache Hamilton + Pandas in five minutes

-2022-05 Iterating with Apache Hamilton in a Notebook

% Podcasts
- 2024-03 Apache Hamilton mention in Real Python, about ipython magic command post

-2023-06  Exploring the Intersection of DAGs, ML Code, and Complex Code Bases: An Elegant
Solution Unveiled with Stefan Krawczyk of DAGWorks

- 2022-08 SO1E08 - MLOps Week 8: The MLOps Mindset with Stefan Krawczyk
- 2022-04 MLOps dla 100 data scientistow (in Polish)

-2021-09  Aggressively Helpful Platform teams

Contributing

We are open contributions big and small. See our contributing guidelines.

We also operate under a Code of Conduct, and expect contributors to do the same.


https://blog.dagworks.io/p/counting-stars-with-hamilton
https://blog.dagworks.io/p/featurization-integrating-hamilton
https://blog.dagworks.io/p/simplify-prefect-workflow-creation
https://blog.dagworks.io/p/building-a-maintainable-and-modular
https://blog.dagworks.io/p/supercharge-your-airflow-dag-with
https://blog.dagworks.io/p/lineage-hamilton-in-10-minutes-c2b8a944e2e6
https://blog.dagworks.io/p/hamilton-dbt-in-5-minutes-62e4cb63f08f
https://towardsdatascience.com/tidy-production-pandas-with-hamilton-3b759a2bf562
https://outerbounds.com/blog/developing-scalable-feature-engineering-dags
https://towardsdatascience.com/functions-dags-introducing-hamilton-a-microframework-for-dataframe-generation-more-8e34b84efc1d
https://towardsdatascience.com/how-to-use-hamilton-with-pandas-in-5-minutes-89f63e5af8f5
https://towardsdatascience.com/how-to-use-hamilton-with-pandas-in-5-minutes-89f63e5af8f5
https://realpython.com/podcasts/rpp/196/
https://datastackshow.com/podcast/exploring-the-intersection-of-dags-ml-code-and-complex-code-bases-an-elegant-solution-unveiled-with-stefan-krawczyk-of-dagworks/
https://datastackshow.com/podcast/exploring-the-intersection-of-dags-ml-code-and-complex-code-bases-an-elegant-solution-unveiled-with-stefan-krawczyk-of-dagworks/
https://rss.com/podcasts/mlops-weekly/571949/
https://nieliniowy.pl/mlops-dla-100-data-scientistow-stefan-krawczyk-stitch-fix/
https://www.youtube.com/watch?v=az8lXG9v4uo
https://github.com/apache/hamilton/blob/main/CONTRIBUTING.md
https://www.apache.org/foundation/policies/conduct.html
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License

Apache Hamilton is released under the Apache 2.0 License.

Usage analytics & data privacy

By default, when using Apache Hamilton, it collects anonymous usage data to help improve
Apache Hamilton and know where to apply development efforts.

We capture three types of events: one when the Driver object is instantiated, one when the
execute() call on the Driver object completes, and one for most Driver object function invocations.
No user data or potentially sensitive information is or ever will be collected. The captured data is
limited to:

- Operating System and Python version
- A persistent UUID to indentify the session, stored in ~/.hamilton.conf.
- Error stack trace limited to Apache Hamilton code, if one occurs.

- Information on what features you're using from Apache Hamilton: decorators, adapters, result
builders.

- How Apache Hamilton is being used: number of final nodes in DAG, number of modules, size of
objects passed to execute(), the name of the Driver function being invoked.

Else see Telemetry for how to disable telemetry.

Otherwise we invite you to inspect telemetry.py for details.


https://github.com/apache/hamilton/blob/main/LICENSE
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Concepts

Now that you're familiar with the basics and have run your own dataflow, let's dive into the
concepts that makes Apache Hamilton unique and powerful.

Glossary

Before we dive into the concepts, let's clarify the terminology we'll be using:

Directed Acyclic A directed acyclic graph is a computer science/mathematics term for

Graph (DAG) representing the world with “nodes” and “edges”, where “edges” only
flow in one direction. It is called a graph because it can be drawn and
visualized.

Dataflow The organization of functions and dependencies. This is a DAG - it's

directed (one function is running before the other), acyclic, (there are
no cycles, i.e., no function runs before itself), and a graph (it is easily
naturally represented by nodes and edges) and can be represented
visually. See Functions, nodes & dataflow.

Node | Hamilton A single step in the dataflow DAG representing a computation -

node | Transform usually 1:1 with functions but decorators break that pattern - in which
case multiple transforms trace back to a single function. See
Functions, nodes & dataflow.

Function | Python A Python function written by a user to create a single node (in the
function | Hamilton standard case) or many (using function modifiers). See Functions,
function | Node nodes & dataflow.

definition
Module | Python Python code organized intoa .py file. These are natural groupings of
module functions that turn to a set of nodes. See Code Organization for more

details.


https://en.wikipedia.org/wiki/Directed_acyclic_graph
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Driver | Hamilton An object that loads Python modules to build a dataflow. It is
Driver responsible for visualizing and executing the dataflow. See Driver.
script | runner | The piece of code where you create the Driver and execute the
driver code dataflow to get results.

Config Data that dictates the way the DAG is constructed. See Driver.
Function modifiers | A function that modifies how your Hamilton function is compiled into
Decorators a Hamilton node. See Function modifiers.

Functions, nodes & dataflow

On this page, you'll learn how Apache Hamilton converts your Python functions into nodes and
then creates a dataflow.

Functions

Apache Hamilton requires you to write your code using functions. To get started, you simply need
to:

- Annotate the type of the function parameters and return value.
- Specify the function dependencies with the parameter names.
- Store your code in Python modules ( .py files).

Since your code doesn't depend on special “Apache Hamilton code”, you can reuse it however you
want!

Specifying dependencies
In Apache Hamilton, you define dependencies by matching parameter names with the names of

other functions. Below, the function name and return type A() -> int match the parameter A:
int found in functions B() and c().

def A() -> int:
"""Constant value 35


https://docs.python.org/3/library/typing.html
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return 35

def B(A: int) -> float:
"""DiVide A by 3II|III
return A / 3

def C(A: int, B: float) -> float:
"""Square A and multiply by B
return Axx2 % B

C

- B . float

float

The figure shows how Apache Hamilton automatically assembled the functions A(), B(), and
cO).

Helper function

You can prefix a function name with an underscore ( _) to prevent it from being included in a
dataflow. Below, A() and B() are part of the dataflow, but _round_three_decimals() isn't.

def _round_three_decimals(value: float) -> float:
"""Round value by 3 decimals"""
return round(value, 3)

def A(external_input: int) -> int:
"""Modulo 3 of input value"""
return external_input % 3

def B(A: int) -> float:
II"IIDiVide A by 3||"||
b=A/3
return _round_three_decimals(b)

Function naming tips

Apache Hamilton strongly agrees with the Zen of Python #2: “Explicit is better than implicit”.
Meaningful function names help document what functions do, so don't shy away from longer
names. If you were to come across a function named 1life_time_value versus ltv versus 1_t_v,
which one is most obvious? Remember your code usually lives a lot longer than you ever think it
will.


https://peps.python.org/pep-0020/
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Unlike the common practice of including meaningful verbs in function names (eg,
get_credentials(), statistical_test() ), with Apache Hamilton, the function name should
more closely align with nouns. That's because the function name determines the node name and
how data will be queried. Therefore, names that describe the node result rather than its action
may be more readable (e.g., credentials(), statistical_results() ).

Nodes

A node is a single “operation” or “step” in a dataflow. Apache Hamilton users write Python
functions that Apache Hamilton converts into nodes. User never directly create nodes.

Anatomy of a node
The following figure and table detail how a Python function maps to a Hamilton node.

1 7) 1
def A(external _input: int) — int:

3 mimnn mimnn

= external_1input % 3

return a

id  Function components Node components
1 Function name and return type annotation Node name and type
2 Parameter names and type annotations Node dependencies

3 Docstring Description of the node return value


file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/function_anatomy.png
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id  Function components Node components

4 Function body Implementation of the node

Since functions almost always map to nodes 1-to-1, the two terms are often used interchangeably.
However, there are exceptions that we'll discuss later in this guide.

Dataflow

From a collection of nodes, Apache Hamilton automatically assembles the dataflow. For each
node, it creates edges between itself and its dependencies, resulting in a dataflow (or a graph in
more mathematical terms).

From the user perspective, you give Apache Hamilton a Python module containing your functions
and it will generate your dataflow! This is a key difference with popular orchestration / pipeline /
workflow frameworks (Airflow, Kedro, Prefect, VertexAl, SageMaker, etc.)

How other frameworks build graphs

In most frameworks, you first define nodes / steps / tasks / components. Then, you need to create
your dataflow by explicitly specifying the relationship between each node.

Readability

In that case, the code for step A doesn't tell you how it relates step B or the broader dataflow.
Apache Hamilton solves this problem by tying functions, nodes, and dataflow definitions in a
single place. The ratio of reading to writing code can be as high as 10:1, especially for complex
dataflows, so optimizing for readability is high-value.

Maintainability

Typically, editing a dataflow (new feature, debugging, etc.) alters both what a node does and how
the dataflow is structured. Consequently, changes to step A require you to manually ensure
consistent edits to the definition of dataflows, which is likely in another file. In enterprise settings,
it can become difficult to discover and track every location where step A is used (potentially 10s
or 100s of pipelines), increasing the likelihood of breaking changes. Apache Hamilton avoids this
problem entirely because changes to the node definitions, and thus the dataflow, will propagate
to all places the code is used. This greatly improves maintainability and development speed by
facilitating code changes.


https://en.wikipedia.org/wiki/Dataflow_programming
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Recap

- Users write Python functions into modules with proper naming and typing
- Helper functions use an underscore prefix (e.g., _helper() )
- Apache Hamilton converts functions into nodes

- Apache Hamilton automatically assembles nodes into a dataflow

Next step

So far, we learned how to write Apache Hamilton code for our dataflow. Next, we'll explore how we
can effectively

1. Convert a Python module into dataflow
2. Visualize a dataflow
3. Execute a dataflow

4. Gather and store results of a dataflow

Driver

Once you defined your dataflow in a Python module, you need to create a Hamilton Driver to
execute it. This page details the Driver basics, which include:

1. Defining the Driver
2. Visualizing the dataflow
3. Executing the dataflow

For this page, let's pretend we defined the following module my_dataflow.py :

# my_dataflow.py

def A() -> int:
"""Constant value 35
return 35

def B(A: int) -> float:
"""DiVide A by 3IIIIII
return A / 3
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def C(A: int, B: float) -> float:
"""Square A and multiply by B"""
return Ax*2 * B

Define the Driver

First, you need to create a driver.Driver object. This is done by passing Python modules to the
driver.Builder() object along other configurations and calling .build() .

The most basic Driver is built like this:

# run.py

from hamilton import driver

import my_dataflow # <- module containing functions to define
dataflow

# variable "dr” is of type “driver.Driver’
# it is created by a “driver.Builder  object
dr = driver.Builder().with_modules(my_dataflow).build()

The .build() method will fail if the definition found in my_dataflow is invalid (e.g., type
mismatch, missing annotations) allowing you to fix issues and iterate quickly.

The briver is defined in the context you intend to run, separately from your dataflow module. It
can be in a script, notebook, server, web app, or anywhere else Python can run. As a convention,
most Apache Hamilton code examples use a script named run.py .

Visualize the dataflow

Once you successfully created your Driver, you can visualize the entire dataflow with the following:

# run.py
from hamilton import driver
import my_dataflow

dr = driver.Builder().with_modules(my_dataflow).build()
dr.display_all_functions("dag.png") # outputs a file dag.png
dr.display_all_functions() # to view directly in a notebook

Dataflow visualizations are useful for documenting your project and quickly making sense of what
a dataflow does (see Visualization).
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Execute the dataflow

From the Driver, you can request the value of specific nodes by calling

dr.execute(final_vars=[...]), where final_vars is a list of node names. By default, results are
returned in a dictionary with {node_name: result}.

The following requests the node ¢ and visualizes the dataflow execution:

# run.py
from hamilton import driver
import my_dataflow

dr = driver.Builder().with_modules(my_dataflow).build()
dr.visualize_execution(["C"], "execute_c.png")
results = dr.execute(["C"])

print(results["C"]) # access results dictionary

The Driver automatically determines the minimum required path to compute requested nodes.
See the respective outputs for dr.visualize_execution(["C"]) and

dr.visualize_execution(["B"]) :

Legend Legend

B
- float . B
float
Development tips

With Apache Hamilton, development time is mostly spent writing functions for your dataflow in a
Python module. Rebuilding the Driver and visualizing your dataflow as you make changes helps
iterative development. Find below two useful development workflows.
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With a Python module

One approach is to define the dataflow and the Driver in the same file (e.g, my_dataflow.py )
Then, you can execute it as a script with python my_dataflow.py to rebuild the Driver and
visualize your dataflow. This ensures your dataflow definition remains valid as you make changes.

For example:

# my_dataflow.py

def A() -> int:
"""Constant value 35
return 35

# ... more functions

# is True when calling “python my_dataflow.py"
if name__ == "_main__
from hamilton import driver
# __main__ refers to the file itself
# and yes, a file can import itself as a module!

import __main__

dr = driver.Builder().with_modules(__main__).build()
dr.display_all_functions("dag.png")
dr.execute(["C"])

With a Jupyter notebook

Another approach is to define the dataflow in a module (e.g, my_dataflow.py ) and reload the
Driver in a Jupyter notebook. This allows for a more interactive experience when you want to
inspect the results of functions as you're developing.

By default, Python only imports a module once and subsequent import statements don't reload
the module. We reload our imported module with importlib.reload(my_dataflow) and rebuild
the Driver as we make changes to our dataflow.

# notebook.ipynb

# %%cell 1

import importlib

from hamilton import driver
import my_dataflow

# %%cell 2
# this will reload an already imported module
importlib.reload(my_dataflow)

# rebuild the "Driver with the reloaded module and execute again
dr = driver.Builder().with_modules(my_dataflow).build()
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dr.display_all_functions("dag.png")
results = dr.execute(["C"])

# %%cell 3
# do something with results
print(results["C"])

Learn other Jupyter development tips on the page Jupyter notebooks.

Recap

- The Driver automatically assembles a dataflow from Python modules
- The Driver visualizes the dataflow created from your code

- Functions are executed by requesting nodes to driver .execute()

Next step
Now, you know the basics of authoring and executing Apache Hamilton dataflows! We encourage
you to:

- Write some code with our interactive tutorials

- Kickstart your project with community resources

The next Concepts pages cover notions to write more expressive and powerful code. If you feel
stuck or constrained with the basics, it's probably a good time to (re)visit them. They include:

- Materialization: interact with external data sources
- Function modifiers: write expressive dataflows without repeating code

- Builder: how to customize your Driver

Visualization

After assembling the dataflow, several visualization features become available to the Driver.
Apache Hamilton dataflow visualizations are great for documentation because they are directly
derived from the code.


https://www.tryhamilton.dev/intro
file:///home/runner/work/hamilton/hamilton/docs/_build/ecosystem/index.html
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On this page, you'll learn:

- the available visualization functions
- how to answer lineage questions
- how to apply a custom style to your visualization

For this page, we'll assume we have the following dataflow and Driver:

# my_dataflow.py

def A() -> int:
"""Constant value 35"""
return 35

def B(A: int) -> float:
II"IIDiVide A by 3“"“
return A / 3

def C(A: int, B: float) -> float:
"""Square A and multiply by B"""
return Ax*2 * B

def D(A: int) -> str:
"""Say "hello” A times"""
return "hello "

def E(D: str) -> str:
"""Say hello*A world"""
return D + "world"

# run.py

from hamilton import driver

import my_dataflow

dr = driver.Builder().with_modules(my_dataflow).build()

Available visualizations

View full dataflow

During development and for documentation, it's most useful to view the full dataflow and all
nodes.

dr.display_all_functions(...)
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View executed dataflow

Visualizing exactly which nodes were executed is more helpful than viewing the full dataflow when

logging driver execution (e.g., ML experiments).

You should produce the visualization before executing the dataflow. Otherwise, the figure won't be

generated if the execution fails first.

# pull variables to ensure .execute() and
# .visualize_execution() receive the same

# arguments

‘Final_vaI‘S = ["A", llcll' nEn]

inputs = dict()
overrides = dict(B=36.1)

dr.visualize_execution(

final_vars=final_vars,

inputs=inputs,
overrides=overrides,

)

dr.execute(

final _vars=final _vars,

inputs=1inputs,
overrides=overrides,
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An equivalent method is available if you're using materialization.

materializer = to.json(
path="./out.json",
dependencies=["C", "E"],
combine=base.DictResult(),
id="results_to_json",

)

additional_vars = ["A"]

inputs = dict()

overrides = dict(B=36.1)

dr.visualize materialization(
materializer,
additional_vars=additional_vars,
inputs=inputs,
overrides=dict(B=36.1),
output_file_path="dag.png"

)

dr.materialize(
materializer,
additional_vars=additional_vars,
inputs=inputs,
overrides=dict(B=36.1),
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Learn more about Materialization.

View node dependencies

Representing data pipelines, ML experiments, or LLM applications as a dataflow helps reason
about the dependencies between operations. The Hamilton Driver has the following utilities to
select and return a list of nodes (to learn more Lineage + Apache Hamilton):

+ .what_is_upstream_of(*node_names: str)

- .what_is_downstream_of(*node_names: str)

+ .what_is_the_path_between(upstream_node_name: str, downstream_node_name: str)
These functions are wrapped into their visualization counterparts:

Display ancestors of B:

dr.display_upstream(["B"])

Legend

B
float

Display descendants of b and its immediate parents (A only).
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dr.display_downstream(["D"])

Legend

D E

str str

Filter nodes to the necessary path:

dr.visualize_path-between("A", "C")
# dr.visualize_path-between("C", "D") would return
# ValueError: No path found between C and D.

Legend

B
' float .

Configure your visualization

All of the above visualization functions share parameters to customize the visualization (e.g,, hide
legend, hide inputs). Learn more by reviewing the API reference for Driverdisplay_all_functions();
parameters should apply to all other visualizations.

Custom node labels with display_name

Use the atag decorator with display_name to show human-readable labels in visualizations
while keeping valid Python identifiers as function names. This is useful for creating presentation-
ready diagrams or adding business-friendly names:
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from hamilton.function_modifiers import tag

atag(display_name="Parse Raw JSON")
def parse_raw_json(raw_data: str) -> dict:
return json.loads(raw_data)

atag(display_name="Transform to DataFrame")
def transform_to_df(parse_raw_json: dict) -> pd.DataFrame:
return pd.DataFrame(parse_raw_json)

When visualized, nodes will display “Parse Raw JSON" and “Transform to DataFrame” instead of
their function names. This keeps your code Pythonic while making visualizations more readable
for stakeholders.

Note that display_name only affects visualization labels - the actual node names used in code
and execution remain the function names.

Apply custom style

By default, each node is labeled with name and type, and stylized (shape, color, outline, etc.). By
passing a function to the parameter custom_style_function, you can customize the node style
based on its attributes. This pairs nicely with the @tag function modifier (learn more Add
metadata to a node)

Your own custom style function must:
1. Use only keyword arguments, taking in node and node_class .

2. Return a tuple (style, node_class, legend_name) where:
o style: dictionary of valid graphviz node style attributes.

° node_class : class used to style the default visualization - we recommend returning
the input node_class

o legend_name : text to display in the legend. Return None for no legend entry.

3. For the execution-focused visualizations, your custom styles are applied before the modifiers
for outputs and overrides are applied.

If you need more customization, we suggest getting the graphviz object produced, and modifying it
directly.

This online graphviz editor can help you get started!

def custom_style(
%, node: graph_types.HamiltonNode, node_class: str


https://edotor.net/
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) -> Tuple[dict, Optional[str], Optional[str]]:
"""Custom style function for the visualization.

:param node: node that Apache Hamilton 1s styling.
:param node_class: class used to style the default visualization
:return: a triple of (style, node_class, legend_name)

if node.type in [float, int]:
style = ({"fillcolor": "aquamarine"}, node_class, "numbers")

else:
style = ({}, node_class, None)

return style

dr.display_all_functions(custom_style_function=custom_style)

Legend

str str

—
See the full code example for more details.

Materialization

So far, we executed our dataflow using the Driver.execute() method, which can receive an
inputs dictionary and return a results dictionary (by default). However, you can also execute
code with Driver.materialize() to directly read from / write to external data sources (file,
database, cloud data store).

On this page, you'll learn:
- How to load and save data in Apache Hamilton
- Why use materialization

- What are DataSaver and Dataloader objects
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- The difference between .execute() and .materialize()

- The basics to write your own materializer

Different ways to write the same dataflow

Below are 6 ways to write a dataflow that:

1. loads a dataframe from a parquet file

2. preprocesses the dataframe

3. trains a machine learning model

4. saves the trained model

The first two options don't use the concept of materialization and the next four do.

Without materialization
1. From nodes 1. From Driver

import pandas as pd
import xghboost

def raw_df(data_path: str) -> pd.DataFrame:
"""Load raw data from parquet file"""
return pd.read_parquet(data_path)

def preprocessed_df(raw_df: pd.DataFrame) ->

pd.DataFrame:
"""preprocess raw data
return ...

def model(preprocessed_df: pd.DataFrame) ->
xgboost.XGBModel:
"""Train model on preprocessed data
return ...

import pandas as pd
import xghoost

def preprocessed_df|
pd.DataFrame:

preprocess r:
return ...

def model(preproces:

xgboost.XGBModel:
"""Train model «
return ...

if __name__ == "__m:

import __main__

from hamilton ir
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1. From nodes

def save_model(model: xgboost.XGBModel, model_dir:

str) -> None:
"""Save trained model to JSON format"""

model.save_model(f"{model_dir}/model.json")

if __name__ == "__main__
import __main__

from hamilton import driver

dr =

driver.Builder().with_modules(__main__).build()

data_path R

model_dir "

inputs = dict(data_path=data_path,
model_dir=model_dir)

final_vars = ["save_model"]

results = dr.execute(final_vars, inputs=inputs)

# results["save_model"] == None

Legend

I 1
1 model_dir str 1
I

Pt T X raw_df preprocessed_df model
I data_path str
b 1 DataFrame DataFrame XGBModel

Observations:

save_model
NoneType

1. From Driver

dr =

driver.Builder().wis

data_path "

model _dir = "..
inputs = dict(r:
final_vars = ["r

results = dr.ex
results[ "model"

model.json")

1. These two approaches load and save data using pandas and xgboost without any Apache
Hamilton constructs. These methods are transparent and simple to get started, but as the
number of node grows (or across projects) defining one node per parquet file to load

introduces a lot of boilerplate.
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2. Using 1) from nodes improves visibility by including loading & saving in the dataflow (as
illustrated).

3. Using 2) from ~Driver facilitates modifying loading & saving before code execution when
executing the code, without modifying the dataflow itself. It is particularly useful when moving
from development to production.

Limitations

Apache Hamilton's approach to “materializations” aims to solve 3 limitations:
1. Redundancy: deduplicate loading & saving code to improve maintainability and debugging
2. Observability: include loading & saving in the dataflow for full observability and allow hooks

3. Flexibility: change the loading & saving behavior without editing the dataflow

With materialization

1. Simple Materialization 1. Static materializers
import pandas as pd import pandas as pd
import xgboost import xghoost

from hamilton.function_modifiers import dataloader,

datasaver def preprocessed_df
from hamilton.io import utils pd.DataFrame:
"""preprocess r:
return ...
adataloader()
def raw_df(data_path: str) -> tuple[pd.DataFrame,
dict]: def model(preproces:
"""lLoad raw data from parquet file""" xgboost.XGBModel:
df = pd.read_parquet(data_path) """Train model «
return df, return ...

utils.get_file_and_dataframe_metadata(data_path, df)
if __name__ == "__m:
def preprocessed_df(raw_df: pd.DataFrame) -> import __main__
pd.DataFrame:
"""preprocess raw data from hamilton ir
return ... from hamilton. i

data_path = "..
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1. Simple Materialization 1. Static materializers

def model(preprocessed_df: pd.DataFrame) ->
xgboost.XGBModel:
"""Train model on preprocessed data

model_dir = .
materializers =
from_.parque

return path=data_path),
to.json(
id="modz¢
adatasaver() DataSaver node
def save_model(model: xgboost.XGBModel, model_dir: depender
str) -> dict: path=f"-
"""Save trained model to JSON format""" ),
model.save_model(f"{model_dir}/model.json") ]
return utils.get_file_metadata(f"{model_dir}/ dr = (
model. json") driver.Builc
.with_module
.with_mater:
if __name__ == "__main__": .build()
import __main__ )
from hamilton import driver results = dr.ex
# results["mode’
dr = # results["mode’
driver.Builder().with_modules(__main__).build() the model
data_path = "..."
model_dir = " "
inputs = dict(data_path=data_path,
model _dir=model_dir)
final_vars = ["save_model"]
results = dr.execute(final_vars, inputs=inputs)
# results["save_model"] == None
Legend Legend

e —
materializer function
e —
function materializer

load_data.raw_df raw_df
Tuple DataFrame

1
1 input :
1

__________

raw_df preprocessed_df model
DataFrame DataFrame XGBModel

save_model

< =
raw_df.loader

raw_df()

__________

save_model()

__________
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Simple Materialization

When you don’t need to hide the implementation details of how you read and write, but you want
to track what was read and written, you need to expose extra metadata. This is where the
@datasaver() and @dataloader() decorators come in. They allow you to return metadata about
what was read and written, and this metadata is then used to track what was read and written.

This is our recommended first step when you're starting to use materialization in Apache
Hamilton.

Static materializers

Passing from_ and to Apache Hamilton objects to Builder().with_materializers() injects into
the dataflow standardized nodes to load and save data. It solves the 3 limitations highlighted in
the previous section:

1. Redundancy [¥%4: Using the from_ and to Apache Hamilton constructs reduces the boilerplate
to load and save data from common formats (JSON, parquet, CSV, etc.) and to interact with 3rd
party libraries (pandas, matplotlib, xgboost, dlt, etc.)

2. Observability [%4: Loaders and savers are part of the dataflow. You can view them with
Driver.display_all_functions() and execute nodes by requesting them with

Driver.execute() .

3. Flexibility [%4: The loading and saving behavior is decoupled from the dataflow and can
modified easily when creating the Driver and executing code.

Dynamic materializers

The dataflow is executed by passing from_ and to objects to Driver.materialize() instead of
the regular briver.execute() . This approach ressembles 2) from Driver:

Driver.materialize() can receive data savers ( from_) and loaders ( to ) and will execute all
to passed. Like Driver.execute(), it can receive inputs, and overrides, but instead of

final_vars it receives additional_vars .

1. Redundancy : Uses from_ and to Apache Hamilton constructs.

2. Observability #: Materializers are visible with Driver.visualize_materialization(), but can't
be introspected otherwise. Also, you need to rely on Driver.materialize() which has a
different call signature.
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3. Flexibility [%4: Loading and saving is decoupled from the dataflow.

© Note

Using static materializers is typically preferrable. Static and dynamic materializers can be used

together with dr = Builder.with_materializers().build() and later dr.materialize().

Function modifiers
By adding @aload_from and asave_to function modifiers (Load and save external data) to
Hamilton functions, materializers are generated when using Builder.with_modules(). This

approach ressembles 1) from Driver:

© Note

Under the hood, the @load_from modifier uses the same code as from_ to load data, same

for @save_to and to.

1. Redundancy #: Using @load_from and @save_to reduces redundancy. However, to make
available to multiple nodes a loaded table, you would need to decorate each node with the
same @save_to . Also, it might be impractical to decorate dynamically generated nodes (e.g,
when using the @parameterize function modifier).

2. Observability [%4: Loaders and savers are part of the dataflow.

3. Flexibility 4#: You can modify the path and materializer kwargs at runtime using source() in
the decorator definition, but you can’t change the format itself (e.g., from parquet to CSV).

O Note

It can be desirable to couple loading and saving to the dataflow using function modifiers. It
makes it clear when reading the dataflow definition which nodes should load or save data

using external sources.
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DataLoader and DataSaver

In Apache Hamilton, Dataloader and DataSaver are classes that define how to load or save a

particular data format. Calling Driver.materialize(DatalLoader(), DataSaver()) adds nodes to

the dataflow (see visualizations above).

Here are simplified snippets for saving and loading an XGBoost model to/from JSON.

DataLoader

import dataclasses

from os import PathLike

from typing import Any,
Collection, Dict, Tuple, Type,
Union

import xgboost

from hamilton.io import utils
from hamilton.io.data_adapters
import Dataloader

adataclasses.dataclass

class

XGBoostJsonReader(DatalLoader):
path: Union[str, bytearray,

PathLike]

aclassmethod
def applicable_types(cls) ->

Collection[Type]:
return [xgboost.XGBModel]

def load_data(self, type_:
Type) -> Tuple[xgboost.XGBModel,
Dict[str, Any]]:
# uses the XGBoost library
model = type_()

model.load_model(self.path)
metadata =

utils.get_file_metadata(self.path)
return model, metadata

aclassmethod

DataSaver

import dataclasses

from os import PathLike

from typing import Any,
Collection, Dict, Type, Union

import xghoost

from hamilton.io import utils
from hamilton.io.data_adapters
import DataSaver

adataclasses.dataclass

class

XGBoostJsonWriter(DataSaver):
path: Union[str, PathLike]

aclassmethod
def applicable_types(cls) ->

Collection[Typel:
return [xghoost.XGBModel]

def save_data(self, data:
xgboost.XGBModel) -> Dict[str,
Any]:
# uses the XGBoost library
data.save_model(self.path)
return
utils.get_file_metadata(self.path)

aclassmethod
def name(cls) -> str:
return "json" # the name
for “to.{name}"
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DataLoader DataSaver

def name(cls) -> str:
return "json" # the name
for “from_.{name}"

To define your own DataSaver and Dataloader, the Apache Hamilton XGBoost extension provides a
good example

Function modifiers

In Functions, nodes & dataflow, we discussed how to write Python functions to define Hamilton
nodes and dataflow. In the basic case, each function defines one node.

Yet, it's common to need nodes with similar purposes but different dependencies, such as
preprocessing training and evaluation datasets. In that case, using a function modifier can help
create both nodes from a single Hamilton function!

On this page, you'll learn:
- Python decorators basics
- Add metadata to node
- Validate node output
- Split node output into n nodes
- Define one function, create n nodes
- Select nodes to load from module

This page covers important conceptual notions but is not exhaustive. To find details about all
function modifiers see API references Decorators.

Decorators

Python decorators are statements that begin with @ located above function definitions. Apache
Hamilton uses decorators to implement function modifiers and reduce the amount of code you
have to write to make expressive dataflows.


https://github.com/apache/hamilton/blob/main/hamilton/plugins/xgboost_extensions.py
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Multiple decorators can be stacked on a single function and are applied from bottom to top.
Apache Hamilton decorators should be insensitive to ordering, but be careful with non-Apache
Hamilton decorators (e.g., @retries, @time). See this decorator primer to learn more.

Function modifiers were designed to have clear semantics, so you should be able to figure out
what they do from their name. For instance, the following code adds metadata using @tag and
conducts some checks over the return value with check_output .

otag(owner='Data-Science', pii='False')
acheck_output(data_type=np.float64, range=(-5.0, 5.0),
allow_nans=False)
def height_zero_mean_unit_variance(

height_zero_mean: pd.Series, height_std_dev: pd.Series
) -> pd.Series:
"""Zero mean unit variance value of height"""
return height_zero_mean / height_std_dev

Reminder: Anatomy of a node

This section from the page Functions, nodes & dataflow details how a Python function maps to a
Hamilton node. We'll reuse these terms to explain the function modifiers.

1 2 1
def A(external _input: int) — 1int:

3 mimnn mimnn

= external _1input % 3

return a

id  Function components Node components

1 Function name and return type annotation Node name and type


https://realpython.com/primer-on-python-decorators/
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id  Function components Node components

2 Parameter names and type annotations Node dependencies

3 Docstring Description of the node return value
4 Function body Implementation of the node

Add metadata to a node

@tag
The atag decorator doesn’t modify the function/node. It attaches metadata to the node that can

be used by Apache Hamilton and you. It can help tag nodes by ownership, data source, version,
infrastructure, and anything else.

For example, this tags the associated data product and the sensitivity of the data.

from hamilton.function_modifiers import tag

atag(data_product="'final', pii='true')
def final_column(

intermediate_column: pd.Series
) -> pd.Series:

Query node by tag

Once you built your Driver, you can get all nodes with Driver.list_available_variables() and
then filter them by tag. The following gets all the nodes for which data_product="final" and
passes them to driver.execute()

dr = driver.Builder().with_modules(my_module).build()
tagged_nodes = [node.name for node in dr.list_available_variables()
if 'final' == node.tags.get('data_product')]

results = dr.execute(tagged_nodes)
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Customize visualization by tag

Tags are also accessible to the visualization styling feature, allowing you to highlight important
nodes for your documentation. See Apply custom style for details.

Legend
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@schema

The @schema function modifiers provides a lightweight way to add type metadata to dataframes. It
works by specifying tuples of (field_name, field_type) with types as strings.

from hamilton.function_modifiers import schema

@schema.output(
("a", "int"),
("b", "float"),
("c", "str")
)
def clean_df(raw_df: pd.DataFrame) -> pd.DataFrame:
return pd.DataFrame.from_records(
: {"a": [1], "b": [2.0], "c": ["3"]}

______________

______________

clean_df
(c:str ] (b:floatj (a:int )
DataFrame
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Validate node output

The acheck_output function modifiers are applied on the node output / function return and
therefore don't directly affect node behavior. Decorators separate data validation from the
function body where the core logic is. It improves function readability, and it helps reusing and
maintaining standardized checks across multiple functions.

In the future, validation capabilities may be added to @schema. For now, it's only added
metadata.

@check_output*

The acheck_output implements many data checks for Python objects and DataFrame/Series
including data type, min/max/between, count, fraction of null/nan values, and allow null/nan.
Failed checks are either logged (importance="warn") or make the dataflow fail

( importance="fail" )

The next snippet checks if the returned Series is of type np.int32, which is non-nullable, and if
its within the range 0-100, and logs failed checks. This allows us to manually review instances
where data validation failed.

from hamilton.function_modifiers import check_output

acheck_output(data_type=np.int32, range=(0,100), importance="warn")
def quiz_grade(quiz_df: pd.DataFrame) -> pd.Series:
return ...
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Legend
P —
' input
_____ 1
.
:— T —d; —D—t—F— T —: quiz_grade_raw quiz_grade_data_type_validator quiz_grade
quiz_df DataFrame
e : Series ValidationResult Series

quiz_grade_range_validator

ValidationResult

- To see all available validators, go to the file hamilton/data_quality/default_validators.py
and view the variable AVAILABLE DEFAULT_VALIDATORS .

- The function modifier @check_output_custom allows you to define your own validator.
Validators inherit the base.BaseDefaultValidator class and are essentially standardized
Hamilton node definitions (instead of functions). See hamilton/data_quality/
default_validators.py or reach out on Slack for help!

- Note: @check_output_custom decorators cannot be stacked, but they instead can take multiple
validators.

As you see, validation steps effectively add nodes to the dataflow and the visualization. This
helps trace which specific check failed for instance, but it can make visualizations harder to
read.

You can hide these nodes using the custom visualization style feature (see Apply custom style)
by applying the style {"style": "invis"} to nodes with the tag
hamilton.data_quality.source_node . This will only keep the original nodes and their _raw
variant.

pandera support

Apache Hamilton has a pandera plugin for data validation that you can install with pip install
sf-hamilton[pandera] . Then, you can pass a pandera schema (for DataFrame or Series) to
dcheck_output(schema=...) .


https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
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pydantic support

Apache Hamilton also supports data validation of pydantic models, which can be enabled with
pip install sf-hamilton[pydantic]. With pydantic installed, you can pass any subclass of the

pydantic base model to @check_output(model=...) . Pydantic validation is performed in strict
mode, meaning that raw values will not be coerced to the model’s types. For more information on
strict mode see the pydantic docs.

Split node output into n nodes

Sometimes, your node outputs multiple values that you would like to name and make available to
other nodes. These function modifiers act on the node output / function return.

To add metadata to extracted nodes, use atag_output , which works just like @tag.

@unpack_fields

A good example is splitting a dataset into training, validation, and test splits. We use
aunpack_fields , which requires specifying the names of the fields to extract. The function must
return a tuple with at least as many elements as there are specified fields. Note that selecting a
subset of the tuple or using an indeterminate tuple size is also possible.

from typing import Tuple
from hamilton.function_modifiers import unpack_fields

aunpack_fields("X_train", "X_validation", "X_test")
def dataset_splits(X: np.ndarray) -> Tuple[np.ndarray, np.ndarray,
np.ndarray]:
"""Randomly split data into train, validation, test"""
X_train, X_validation, X_test = random_split(X)
return X_train, X_validation, X_test


https://docs.pydantic.dev/latest/concepts/strict_mode/
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dataset_splits

dict
X_train X_validation X_test
ndarray ndarray ndarray

Now, X_train, X_validation, and X_test are available to other nodes and can be queried with
.execute() . However, since dataset_splits is itself a node, you can query it to obtain all splits
in a single tuple

@extract_fields

Additionally, we can extract fields from an output dictionary using @extract_fields . The function
must return a dictionary that contains, at a minimum, those keys specified in the decorator. In this
case, you can specify a dictionary of fields and their types:

from typing import Dict
from hamilton.function_modifiers import extract_fields

dextract_fields(dict( # fields specified as a dictionary
X_train=np.ndarray,
X_validation=np.ndarray,
X_test=np.ndarray,
))
def dataset_splits(X: np.ndarray) -> Dict:
"""Randomly split data into train, validation, test"""
X_train, X_validation, X_test = random_split(X)
return dict(
X_train=X_train, # keys match those from @extract_fields
X_validation=X_validation,
X_test=X_test,
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dataset_splits

dict
X_train X_validation X_test
ndarray ndarray ndarray

Or if you are using a generic dictionary, you can specify solely the field names.

from typing import Dict
from hamilton.function_modifiers import extract_fields

dextract_fields("X train", "X _validation", "X _test") # field names
only
def dataset_splits(X: np.ndarray) -> Dict[str, np.ndarray]: #
generic dict
"""Randomly split data into train, validation, test"""
X_train, X_validation, X_test = random_split(X)
return dict(
X_train=X_train,
X_validation=X_validation,
X_test=X_test,

If you are using a TypedDict, you can specify the just field names.

from typing import TypedDict
from hamilton.function_modifiers import extract_fields

class DatasetSplits(TypedDict):
X_train: np.ndarray
X_validation: np.ndarray
X_test: np.ndarray

aextract_fields("X train", "X _validation", "X_test")
def dataset_splits(X: np.ndarray) -> DatasetSplits:
"""Randomly split data into train, validation, test"""
X_train, X_validation, X_test = random_split(X)
return dict(
X_train=X_train,
X_validation=X_validation,
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X_test=X_test,

Or you can leave the field names empty and extract all fields from the TypedDict.

from typing import TypedDict
from hamilton.function_modifiers import extract_fields

class DatasetSplits(TypedDict):
X_train: np.ndarray
X_validation: np.ndarray
X_test: np.ndarray

dextract_fields(DatasetSplits) # field names only
def dataset_splits(X: np.ndarray) -> DatasetSplits:
"""Randomly split data into train, validation, test"""
X_train, X_validation, X_test = random_split(X)
return dict(
X_train=X_train,
X _validation=X_validation,
X_test=X_test,

Again, X_train, X_validation, and X_test are now available to other nodes, or you can query
the dataset_splits node to retrieve all splits in a dictionary.

@extract_columns

@dextract_columns is a specialized version of @extract_fields to get individual columns of a
dataframe (pandas, polars, Spark, etc.). It enables column-level lineage which improves visibility
over data transformations and facilitates reusing feature transformations. Also, it can reduce
memory usage by avoiding moving large dataframe through nodes.

Since it knows how to extract series from a dataframe, you just have to specify the column names.

from hamilton.function_modifiers import extract_columns

# assuming user_id and "weekday are existing columns
# note that strings are passed directly, without a list
dextract_columns("user_id", "weekday")
def clean_df(raw_df: pd.DataFrame) -> pd.DataFrame:
"""Clean my data"""
clean_df = clean_my_data(raw_df)
return clean_df
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clean_df

DataFrame

weekday user_id

Series Series

Define one function, create n nodes

The family of @parameterize function modifiers allows the creation of multiple nodes with the
same node implementation / function body (and therefore output type), but different node
inputs.

This has many applications, such as producing the same performance plot for multiple models or
computing groupby aggregates along different dimensions.

@parameterize

You need to specify the generated node name, a dictionary of dependencies, and optionally a
docstring. For the dependencies, you can pass constants with value() or get them from the
dataflow by passing a node name to source() . These notions are tricky at first, but let's look at
an example:

We create 3 nodes: revenue_by_age, revenue_by_country, revenue_by_ occupation. For each, we
get the dataframe df from the dataflow using source() and specify a different groupby_col
with value() . Also, the docstring uses {groupby_col} to have the value inserted.

from hamilton.function_modifiers import parameterize
from hamilton.function_modifiers import source, value

aparameterize(
revenue_by_age=dict(df=source("df"), groupby_col=value("age")),
revenue_by_country=dict(df=source("df"),

groupby_col=value("country")),
revenue_by_occupation=dict(df=source("df"),

groupby_col=value("occupation")),

)

def population_metrics(df: pd.DataFrame, groupby_col: str) -> dict:
"""Compute df metrics aggregates over dimension {groupby_col}"""
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return df.groupby(groupby_col)["revenue"] \
.agg([umeann’ "min", llmaxn]) \
.to_dict()

N
revenue_by_occupation revenue_by_country revenue_by_age

dict dict dict

J

- The above example mixes constant value() and dataflow source() dependencies. The syntax
is indeed verbose. Simplified syntaxes are available through @parameterize_values and
@parameterize_sources if you only need one type of dependency.

-If you need to extract columns from the output of a generated node, use

Qparameterize_extract_columns

Select functions to include

The family of @config decorators doesn’'t modify the function. Rather, it tells the Driver which
functions from the module (and therefore nodes) to include in the dataflow. This helps projects
that need to run in different contexts (e.g, locally vs orchestrator) or need to swap different
implementations of a node (e.g.,, ML experiments, code migration, A/B testing).

At first, there can be confusion between @config and the inputs and overrides of the
Driver's .execute() and .materialize() methods. In common language, people might refer
to the .execute(inputs=..., overrides=...) as a configuration. However, these two affect
the values passing through the dataflow once the Driver is built while aconfig determines
how the Driver is built.

@config

For the decorator, you must specify one or more key=value pairs. Then, you need to add to the
Builder .with_config() and give it a dictionary of key=value pairs. This will determine which
functions to load.
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This example uses @config.when() to select between a binary classifier and a regressor model.

Notice a few elements:

- both functions have the same name base_model with a suffix __binary or __regression. This
is required because Python enforces unique function names. After the config determines which
function to load, Apache Hamilton will remove the suffix from the node name.

- the two functions have different return types, so train_model needs to annotate base_model
as a Union[] type.

# model_training.py
from hamilton.function_modifiers import config

aconfig.when(task="binary_classification")
def base_model__binary() -> XGBClassifier:
return XGBClassifier(...)

aconfig.when(task="continuous_regression")
def base_model__regression() -> XGBRegressor:
return XGBRegressor(...)

def train_model(
base_model: Union[XGBClassifier, XGBRegressor],
X: np.ndarray,
y: np.ndarray,
) -> Union[XGBClassifier, XGBRegressor]:
return

# run.py

dr = (
driver.Builder()
.with_modules(model_training)
.with_config(dict(task="continuous_regression"))
.build()
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__________________
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y ndarray
X ndarray
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Union

n the above example, if the Driver receives no value for the key task or the value isn’t
"binary_classification" Or "continuous_regression", there would be no base_model node

loaded and train_model would fail.

Using aconfig.when_not() can help set up a default case and ensure a base_model node is

always loaded.

aconfig.when(library="xgboost")
def base_model__xgboost() -> XGBClassifier:
return XGBClassifier(...)

aconfig.when_not(library="xgboost")
def base_model__default() -> sklearn.ensemble.RandomForestRegressor:
return sklearn.ensemble.RandomForestRegressor(...)

There exists also @config.when_in() and @config.when_not_in() that accept a list of values to

check. Expanding on the previous example:

aconfig.when(library="xgboost")
def base_model__xgboost() -> XGBClassifier:
return XGBClassifier(...)

aconfig.when(library="1lightgbm")
def base_model__lightgbm() -> LGBMClassifier:
return LGBMClassifier(...)

aconfig.when_not_in(library=["xgboost", "lightgbm"])
def base_model__default() -> sklearn.ensemble.RandomForestRegressor:
return sklearn.ensemble.RandomForestRegressor(...)
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Load and save external data

Most dataflows require reading or writing data to external sources in some capacity. It's a good
Idea to conduct this step in a node separated from transformations to trace failures more easily.

Nevertheless, adding one function per read/write becomes tedious and hard to maintain. Apache
Hamilton provides well-tested implementations for common formats (JSON, CSV, Parquet, etc.)
available through @load_from and @save_to decorators and materializers (see Materialization).

More formats are available through Apache Hamilton plugins, and you should be able to add your
own custom loader/saver (reach out on Slack for help!)

@load_from

You can think of @load_from as adding an upstream node. The next example specifies the path
of the file, which will be loaded in the variable raw_data. Note that the variable type should be
compatible with the loaded file ( dict for JSON here).

aload_from. json(path="/path/to/file.json")
def normalized data(raw _data: dict) -> dict:
return ...

Legend

normalized_data.load_data.raw_data task N
Tuple Any

normalized_data.select_data.raw_data

dict

normalized_data

dict

It is possible to use source() (like in @parameterize) to specify the file path from the driver
code. See:

# functions.py

@load_from. json(path=source("raw_data_path"))

def normalized data(raw _data: dict) -> dict:
return ...

# run.py

dr = driver.Builder().with_modules(functions).build()
dr.execute(["normalized_data"], inputs=dict(raw_data_path="./this/
file.json"))


https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
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You will need to use the inject_ keyword when you load multiple files into a node or your
function has multiple parameters.

@load_from. json(path="/path/to/logs.json", inject_="logs1l")
aload_from. json(path="/path/to/other/logs.json", inject_="logs2")
def merged_logs(logsl: dict, logs2: dict) -> dict:

return

Legend

merged_logs.load_data.logs2 merged_logs.load_data.logsl task N
Tuple Tuple Any

[merged_logs.select_data.IogsZ [merged_logs.select_data.Iogsl]

dict dict

merged_logs
dict

(@save_to

The @save_to decorator works very similarly to @load_from. In this case, path=... specifies
where the data will be saved, and an output_name_ is required to be able to request the node
from Driver.execute() . Here again, source() can be used.

# functions.py

dsave_to. json(path=source("metrics_path"),

output_name_="metrics_to_json")

def eval_metric(x: np.ndarray, y: np.ndarray) -> dict:
return dict(...)

# run.py

dr = driver.Builder().with_modules(functions).build()
dr.execute(["metrics_to_json"], inputs=dict(metrics_path="./out/
metrics.json"))

Legend

't | task [ N
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Builder

The Driver page covered the basics of building the Driver, visualizing the dataflow, and executing
the dataflow. We learned how to create the dataflow by passing a Python module to
Builder().with_modules() .

On this page, how to configure your Driver with the driver.Builder() . There will be mentions of
advanced concepts, which are further explained on their respective page.

As your Builder code grows complex, defining it over multiple lines can improve readability.
This is possible by using parentheses after the assignment =

dr = (
driver.Builder()
.with_modules(my_dataflow)
.build()

The order of Builder statements doesn’t matter as long as .build() is last.

with_modules()

This passes dataflow modules to the Driver. When passing multiple modules, the Driver assembles
them into a single dataflow.

# my_dataflow.py

def A() -> int:
"""Constant value 35"""
return 35

def B(A: int) -> float:
llllllDiVide A by 3"""
return A / 3

# my_other_dataflow.py

def C(A: int, B: float) -> float:
"""Square A and multiply by B"""
return A*x*2 * B
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# run.py

from hamilton import driver
import my_dataflow

import my_other_dataflow

dr = driver.Builder().with_modules(my_dataflow,
my_other_dataflow).build()

float

It encourages organizing code into logical modules (e.g., feature processing, model training, model
evaluation). features.py might depend on PySpark and model_training.py on XGBoost. By
organizing modules by dependencies, it's easier to reuse the XGBoost model training module in a
project that doesn’t use PySpark and avoid version conflicts.

# run.py

from hamilton import driver
import features

import model_training
import model_evaluation

dr = (
driver.Builder()

.with_modules(features, model_training, model_evaluation)
.build()

)

Your modules may have same named functions which will raise an error when using .build()
since we cannot have two nodes with the same name. You can use the method
.allow_module_overrides() and Apache Hamilton will choose the function from the later
imported module.

dr = (
driver.Builder()
.with_modules(module A, module B)
.allow_module_overrides()
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.build()

If module_A and module_B both have the function foo(), Apache Hamilton will use
module_B.foo() when constructing the DAG. See https://github.com/apache/hamilton/tree/
main/examples/module_overrides for more info.

with_config()

This is directly related to the aconfig function decorator (see Select functions to include) and
doesn’'t have any effect in its absence. By passing a dictionary to with_config(), you configure
which functions will be used to create the dataflow. You can’t change the config after the Driver is
created. Instead, you need to rebuild the Driver with the new config values.

# my_dataflow.py
from hamilton.function_modifiers import config

def A() -> int:
"""Constant value 35"""
return 35

aconfig.when_not(version="remote")
def B__default(A: int) -> float:
II"IIDiVide A by 3“"“
return A / 3

aconfig.when(version="remote")
def B__remote(A: int) -> float:
II"IIDiVide A by 2"""
return A / 2

# run.py
from hamilton import driver
import my_dataflow

driver.Builder()
.with_modules(my_dataflow)
.with_config(dict(version="remote"))
.build()

)

dr.display_all_functions("dag.png")


https://github.com/apache/hamilton/tree/main/examples/module_overrides
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with_materializers()

Adds DataSaver and Dataloader nodes to your dataflow. This allows to visualize these nodes
using Driver.display_all_functions() and be executed by name with Driver.execute() . More
details on the Materialization documentation page.

# my_dataflow.py
import pandas as pd
from hamilton.function_modifiers import config

def clean_df(raw_df: pd.DataFrame) -> pd.DataFrame:
return ...

def features_df(clean_df: pd.DataFrame) -> pd.DataFrame:
return ...

# run.py

from hamilton import driver

from hamilton.io.materialization import from_, to
import my_dataflow

loader = from_.parquet(target="raw_df", path="/my/raw_file.parquet")
saver = to.parquet(

id="features__parquet",

dependencies=["features_df"],

path="/my/feature_file.parquet"
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)

dr = (
driver.Builder()
.with_modules(my_dataflow)
.with_materializers(loader, saver)
.build()

)

dr.display_all_functions("dag.png")

dr.execute(["features__parquet"])

Legend

load_data.raw_df raw_df clean_df features_df features__parquet
Tuple DataFrame DataFrame DataFrame PandasParquetWriter

with_cache()

This enables Apache Hamilton's caching feature, which allows to automatically store intermediary
results and reuse them in subsequent executions to skip computations. Learn more in the Caching
section.

from hamilton import driver
import my_dataflow

dr = (
driver.Builder()
.with_modules(my_dataflow)
.with_cache()
.build()

with_adapters()

This allows to add multiple Lifecycle hooks to the Driver. This is a very flexible abstraction to
develop custom plugins to do logging, telemetry, alerts, and more. The following adds a hook to
launch debugger when reaching the node "B":
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# run.py
from hamilton import driver, lifecycle
import my_dataflow

debug_hook = lifecycle.default.PDBDebugger(node_filter="B",
during=True)
dr = (

driver.Builder()

.with_modules(my_dataflow)

.with_adapters(debug_hook)

.build()

Other hooks are available to output a progress bar in the terminal, do experiment tracking for
your Apache Hamilton runs, cache results to disk, send logs to DataDog, and more!

enable_dynamic_execution()

This directly relates to the Builder with_local_executor() and with_remote_executor() and the
Parallelizable/Collect functions (see Dynamic DAGs/Parallel Execution). For the Driver to be
able to parse them, you need to set allow_experimental_mode=True like the following

# run.py
from hamilton import driver
import my_dataflow # <- this contains Parallelizable/Collect nodes

dr = (
driver.Builder()
.enable_dynamic_execution(allow_experimental_mode=True) # set
True
.with_modules(my_dataflow)
.build()

By enabling dynamic execution, reasonable defaults are used for local and remote executors. You
also specify them explicitly as such:

# run.py

from hamilton import driver

from hamilton.execution import executors
import my_dataflow

dr = (
driver.Builder()
.with_modules(my_dataflow)
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.enable_dynamic_execution(allow_experimental_mode=True)
.with_local_executor(executors.SynchronousLocalTaskExecutor())
.with_remote_executor(executors.MultiProcessingExecutor(max_tasks=5))
.build()

Caching

Caching enables storing execution results to be reused in later executions, effectively skipping
redundant computations. This speeds up execution and saves resources (computation, API credits,
GPU time, etc.), and has applications both for development and production.

To enable caching, add .with_cache() to your Builder() .

from hamilton import driver
import my_dataflow

dr = (
driver.Builder()
.with_module(my_dataflow)
.with_cache()
.build()

)

dr.execute([...])
dr.execute([...])

The first execution will store metadata and results next to the current directory under
./.hamilton_cache . The next execution will retrieve results from cache when possible to skip
execution.

We highly suggest viewing the Caching tutorial for a practical introduction to caching.

How does it work?

Caching relies on multiple components:

- Cache adapter: decide to retrieve a result or execute the node
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- Metadata store: store information about past node executions

- Result store: store results on disk, it is unaware of other cache components.
At a high-level, the cache adapter does the following for each node:
1. Before execution: determine the cache_key

2. At execution:
1.if the cache_key finds a match in the metadata store (cache hit), retrieve the

data_version of the result.

2. If there's no match (cache miss), execute the node and store the data_version of the
result in the metadata store.

3. After execution: if we had to execute the node, store the result in the result store.

The caching mechanism is highly performant because it can pass data_version (small strings)
through the dataflow instead of the actual data until a node needs to be executed.

The result store is a mapping of {data_version: result}. While a cache_key is unique to
determine retrieval or execution, multiple cache keys can point to the same data_version, which
avoid storing duplicate results.

Cache key

Understanding the cache_key Is important to understand why a node is recomputed or not. It is
composed of:

+ node_name : name of the node
- code_version :version of the node's code

- dependencies_data_versions : data_version oOf each dependency of the node

"node_name": "processed_data",
"code_version":
"c2ccafab54280fbc969870b6baas45211277d7e8cfa98a0821836¢c175603ffda2",
"dependencies_data_versions": {
"raw_data": "WgV5-4SfdKTfUY66Xx-msj_xXSKNPNTP2guRhfw==",
"date": "ZWNhd-XN1IFOYV9-2ZXJzaW9u_YGAgKA==",

By traversing the cache keys dependencies_data_versions, we can actually reconstruct the
dataflow structure!
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Cache keys could be unstable across Python and Apache Hamilton versions (because of new
features, bug fixes, etc.). Upgrading Python or Apache Hamilton could require starting with a
new empty cache for reliable behavior.

Observing the cache

Caching is best understood throung interacting with it. Apache Hamilton offers many utilities to
observe and introspect the cache manually.

Logging

To see how the cache works step-by-step, start your code (script, notebook, etc.) by getting the
logger and setting the level to DEBUG . Using INFO will be less noisy and only log GET_RESULT and
EXECUTE_NODE events.

import logging

logger = logging.getLogger("hamilton.caching")
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler())

# this handler will print to the console

The logs follow the structure {node_name}::{task_id}::{actor}::{event_type}::{message},
omitting empty sections.

# example INFO logs for nodes foo, bar, and baz
foo::result_store::get_result::hit
bar::adapter::execute_node
baz::adapter::execute_node

Visualization

After Driver execution, calling dr.cache.view_run() will create a visualization of the dataflow
with results retrieved from the cache highlighted.

By default, it shows the latest run, but it's possible to view previous runs by passing a run_id .
Specify a output_file_path to save the visualization.
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# ... define and execute a "Driver’

# select the 3rd unique run_id
run_id 3 = dr.cache.run_ids[2]
dr.cache.view_run(run_id=run_id_3,
output_file_path="cached_run_3.png")

Legend

.........

. [proba blllty_dlstrlbutlon]
function

rv_continuous

.m start_date datetime

full_cdf

full_pdf

Series
current_date Optional Series

probability_on_date
due_date possible_dates Series
datetime Series

Visualization produced by dr.cache.view_run() . Retrieved results are outlined.

The method .view_run() doens't currently support task-based execution or Parallelizable/

from cache

Series

[probability_before_date}

start_date datetime

Collect.

Structured logs

Structured logs are stored on the Driver.cache and can be inspected programmatically. By
setting .with_cache(log_to_file=True), structured logs will also be appended to a .jsonl file
as they happen; this is ideal for production usage.

To access log, use Driver.cache.logs(). You can .logs(level=...) to "info" or "debug" to
view only GET_RESULT and EXECUTE_NODE or all events. Specifying .logs(run_id=...) will return
logs from a given run, and leaving it empty will returns logs for all executions of this Driver .

dr.execute(...)
dr.cache.logs(level="info")

The shape of the returned object is slightly diffrent if specifying a run_id or not. Specifying a
run_id will give {node_name: List[CachingEvent]}
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Requesting Driver.cache.logs() will return a dictionary with run_id as key and list of
CachingEvent as values {run_id: List[CachingEvent]} . This is useful for comparing run and
verify nodes were properly executed or retrieved.

dr.cache.logs(level="debug", run_id=dr.cache.last_run_id)
# {

# 'raw_data': [CachingEvent(...), ...],

# 'processed_data': [CachingEvent(...), ...],

# "amount_per_country': [CachingEvent(...), ...]
#}

dr.cache.logs(level="debug")

# {

# "'run_id_1': [CachingEvent(...), ...],
# 'run_id_2': [CachingEvent(...), ...]
#}

When using Parallelizable/Collect, nodes part of the “parallel branches” will have a
task_id key too {node_name: {task_id: List[CachingEvent]}} while nodes outside
branches will remain {node_name: List[CachingEvent]}

Cached result format

By default, caching uses the pickle format because it can accomodate almost all Python objects.
Although, it has caveats. The cache decorator allows you to use a different format for a given
node ( JSON, CSV, Parquet, etc.).

The next snippet caches clean_dataset as parquet, and statistics as json. These formats
maybe more reliable, efficient, and easier to work with.

# my_dataflow.py
import pandas as pd
from hamilton.function_modifiers import cache

def raw_data(path: str) -> pd.DataFrame:
return pd.read_csv(path)

acache(format="parquet")
def clean_dataset(raw_data: pd.DataFrame) -> pd.DataFrame:
raw_data = raw_data.fillna(0)


https://grantjenks.com/docs/diskcache/tutorial.html#caveats
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return raw_data

acache(format="json")
def statistics(clean_dataset: pd.DataFrame) -> dict:
return

import driver
import my_dataflow

dr = (
driver.Builder()
.with_modules(my_dataflow)
.with_cache()
.buid()

)

# first execution will product a "~ “parquet ~ file for
““clean_dataset

# and a ~“json " file for "~ “statistics

dr.execute(["statistics"])

# second execution will use these parquet and json files when loading
results

dr.execute(["statistics"])

Internally, this uses Materializers

Caching behavior

The caching behavior refers to the caching logic used to: - version data - load and store metadata
- load and store results - execute or not a node

The DEFAULT behavior aims to be easy to use and facilitate iterative development. However, other
behavior may be desirble in particular scenarios or when going to production. The behavior can
be set node-by-node.

1. DEFAULT : Try to retrieve results from cache instead of executing the node. Node result and
metadata are stored.

2. RECOMPUTE : Always execute the node / never retrieve from cache. Result and metadata are
stored. This can be useful to ensure external data is alawys reloaded.
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3. DISABLE : Act as if caching isn't enabled for this node. Nodes depending on a disabled node will
miss metadata for cache retrieval, forcing their re-execution. Useful for disabling caching in
parts of the dataflow.

4. IGNORE : Similar to Disable, but downstream nodes will ignore the missing metadata and can
successfully retrieve results. Useful to ignore “irrelevant” nodes that shouldn’'t impact the
results (e.g., credentials, API clients, database connections).

Learn more in the Caching logic reference section.

There are other caching behaviors theoretically possible, but these four should cover most
cases. Let us know if you have a use case that is not covered.

Setting caching behavior

The caching behavior can be specified at the node-level via the @cache function modifier or at
the builder-level via .with_cache(...) arguments. Note that the behavior specified by the
Builder will override the behavior from @cache since it's closer to execution.

via @cache

Below, we set raw_data to RECOMPUTE because the file it loads data from may change between
executions. After executing and versioning the result of raw_data, if the data didn’t change from
previous execution, we'll be able to retrieve clean_dataset and statistics from cache.

# my_dataflow.py
import pandas as pd
from hamilton.function_modifiers import cache

acache(behavior="recompute")
def raw_data(path: str) -> pd.DataFrame:
return pd.read_csv(path)

def clean_dataset(raw_data: pd.DataFrame) -> pd.DataFrame:
raw_data = raw_data.fillna(0)
return raw_data
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def statistics(clean_dataset: pd.DataFrame) -> dict:
return ...

via Builder().with_cache()

Equivalently, we could set this behavior via the Builder . You can pass a list of node names to the
keyword arguments recompute, ignore, and disable.Using True to enable that behavior for all
nodes. For example, using recompute=True will force execution of all nodes and store their results
in cache. Having disable=True is equivalent to not having the .with_cache() clause.

from hamilton import driver
import my_dataflow

driver.Builder()
.with_modules(my_dataflow)
.with_cache(recompute=["raw_data"])
.build()

Set a default behavior

By default, caching is “opt-out” meaning all nodes are cached unless specified otherwise. To make
it “opt-in”, where only the specified nodes are cached, set default_behavior="disable" . You can
also try different default behaviors.

from hamilton import driver
import my_dataflow

dr = (
driver.Builder()
.with_modules(my_dataflow)
.with_cache(
default=["raw_data", "statistics"], # set behavior DEFAULT
default_behavior="disable" # all other nodes are DISABLE

)
.build()

Code version

The code_version of a node is determined by hashing its source code, ignoring docstring and
comments.
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Importantly, Apache Hamilton will not version nested function calls. If you edit utility functions or
upgrade Python libraries, the cache might incorrectly assume the code to be the same.

For example, take the following function foo :

def _increment(x):
return x + 1

def foo():
return _increment(13)

# foo's code version:
129064d4496faccO03686e0070967051ceb82c354508a58440910eb82af300db

Despite editing the nested _increment(), we get the same code_version because the content of
foo() hasn't changed.

def _increment(x):
return x + 2

def foo():
return _increment(13)

# foo's code version:
129064d4496faccO03686e0070967051ceb82c354508a58440910eb82af300db

In that case, foo() should return 13 + 2 instead of 13 + 1. Unaware of the change in
_increment(), the cache will find a cache_key match and return 13 + 1.

A solution is to set the caching behavior to RECOMPUTE to force execute foo() . Another is to
delete stored metadata or results to force re-execution.

Data version

Caching requires the ability to uniquely identify data (e.g., create a hash). By default, all Python
primitive types (int, str, dict, etc.) are supported and more types can be added via extensions
(e.g, pandas ). For types not explicitly supported, caching can still function by versioning the
object’s internal __dict__ instead. However, this could be expensive to compute or less reliable
than alternatives.
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Recursion depth

To version complex objects, we recursively hash its values. For example, versioning an object
List[Dict[str, float]] involves hashing all keys and values of all dictionaries. Versioning
complex objects with large __dict__ state can become expensive.

In practice, we need to need a maximum recursion depth because there’s a trade-off between the
computational cost of hashing data and how accurately it uniquely identifies data (reduce hashing
collisions)

Here's how to set the max depth:

from hamilton.io import fingerprinting
fingerprinting.set_max_depth(depth=3)

Support additional types

Additional types can be supported by registering a hashing function via the module
hamilton.io.fingerprinting . It uses @functools.singledispatch to register the hashing function
per Python type. The function must return a str . The code snippets shows how to support polars

DataFrame :

import polars as pl
from hamilton.io import fingerprinting

# specify the type via the decorator
afingerprinting.hash_value.register(pl.DataFrame)
def hash_polars_dataframe(obj, *args, *xkwargs) -> str:

"""Convert a polars dataframe to a list of row hashes, then hash
the 1list.

We consider that row order matters.

# obj is of type “pl.DataFrame’

hash_per_row = obj.hash_rows(seed=0)

# fingerprinting.hash_value(...) will automatically hash
primitive Python types

return fingerprinting.hash_value(hash_per_row)

Alternatively, you can register functions without using decorators.

from hamilton.io import fingerprinting
def hash_polars_dataframe(obj, xargs, *xkwargs) -> str:

fingerprinting.hash_value.register(pl.DataFrame,
hash_polars_dataframe)


https://docs.python.org/3/library/functools.html#functools.singledispatch
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If you want to override the base case, the one defined by the function hash_value(), you can do
so by registering a function for the type object .

ofingerprinting.hash_value.register(object)
def hash_object(obj, *args, **kwargs) -> str:

Storage

The caching feature is powered by two data storages:

- Metadata store: It contains information about past briver executions (code version, data
version, run id, etc.). From this metadata, Apache Hamilton determines if a node needs to be
executed or not. This metadata is generally lightweight.

- Result store: It's a key-value store that maps a data version to a result. It's completely unaware
of nodes, executions, etc. and simply holds the results. The result store can significantly grow in
size depending on your usage. By default, all results are pickled, but other formats are possible.

Setting the cache path

By default, the metadata and results are stored under a new subdirectory ./.hamilton_cache/,
next to the current directory. Alternatively, you can set a path via .with_cache(path=...) that will
be applied to both stores.

By project
Centralizing your cache by project is useful when you have nodes that are reused across multiple
dataflows (e.g, training and inference ML pipelines, feature engineering).

# training_script.py
from hamilton import driver
import training

cache_path = "/path/to/project/hamilton_cache"
train_dr =
driver.Builder().with_modules(training).with_cache(path=cache_path).build()

# inference_script.py
from hamilton import driver
import inference

cache_path = "/path/to/project/hamilton_cache"
predict_dr =
driver.Builder().with_modules(inference).with_cache(path=cache_path).build()
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Globally

Using a global cache is easier storage management. Since the metadata and the results for all
your Apache Hamilton dataflows are in one place, it can be easier to cleanup disk space.

import pathlib
from hamilton import driver
import my_dataflow

# set the cache under the user's global directory for any operating

system

# The "Path™ 1s converted to a string.

cache_path = str(pathlib.expanduser().joinpath("/.hamilton_cache"))

dr =
driver.Builder().with_module(my_dataflow).with_cache(path=cache_path).build()

It can be a good idea to store the cache path in an environment variable.

Separate locations
If you want the metadata and result stores to be at different location, you can instantiate and
pass them to .with_cache() . In that case, .with_cache()'s path parameter will be ignored.

from hamilton import driver
from hamitlon.io.store import SQLiteMetadataStore, ShelveResultStore

metadata_store = SQLiteMetadataStore(path="~/.hamilton_cache")
result_store = ShelveResultStore(path="/path/to/my/project")

dr = (
driver.Builder()
.with_modules(dataflow)
.with_cache(
metadata_store=metadata_store,
result_store=result_store,

)
.build()

Inspect storage

It is possible to directly interact with the metadata and result stores either by creating them or via

Driver.cache .
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from hamilton.caching.stores.sqlite import SQLiteMetadataStore
from hamilton.caching.stores.file import FileResultStore

metadata_store = SQLiteMetadataStore(path="~/.hamilton_cache")
result_store = FileResultStore(path="/path/to/my/project")

metadata_store.get(context_key=...)
result_store.get(data_version=...)

from hamilton import driver
import my_dataflow

dr = (
driver.Builder()
.with_modules(dataflow)
.with_cache()
.build()

)

dr.cache.metadata_store.get(context_key=...)
dr.cache.result_store.get(data_version=...)

A useful pattern is using the Driver.cache state or structured logs <caching-structured-logs> to
retrieve a data version and query the result store.

from hamilton import driver
from hamilton.caching.adapter import CachingEventType
import my_dataflow

dr = (
driver.Builder()
.with_modules(dataflow)
.with_cache()
.build()

)

dr.execute(["amount_per_country"])

# via "cache.data_versions ; this points to the latest run
data_version = dr.cache.data_versions["amount_per_country"]
stored_result = dr.cache.result_store.get(data_version)

# via structured logs; this allows to query any run
run_id =
for event in dr.cache.logs(level="debug")[run_id]:
if (
event.event_type == CachingEventType.SET_RESULT
and event.node_name == "amount_per_country"
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data_version = event.value
break

stored_result = dr.cache.result_store(data_version)

In-memory

You can enable in-memory caching by using the  InMemoryMetadataStore and
InMemoryResultStore . Caching behaves the same, but metadata and results are never persisted
to disk. This is useful in notebooks and interactive sessions where results are only temporary

relevant (e.g., experimentating with new features).

In-memory caching can quickly fill memory. We suggest selectively caching results to limit this

issue.

from hamilton import driver
from hamilton.caching.stores.memory import InMemoryMetadataStore,

InMemoryResultStore
import dataflow

dr = (
driver.Builder()
.with_modules(dataflow)

.with_cache(
metadata_store=InMemoryMetadataStore(),

result_store=InMemoryResultStore(),

)
.build()

In-memory stores also allow you to persist your entire in-memory session to disk or start your in-
memory session by loading an existing cache. This is compatible with most implementations.

Persist cache
This snippet shows how to persist an in-memory cache to an sqlite-backed metadata store and a

file-based result store. Note that you should persist both the metadata and results stores for this
to be useful. The .persist_to() method will repeatedly call .set() on the destination store.
Persisting multiple times will add to the already cached data.
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from hamilton import driver

from hamilton.caching.stores.sqlite import SQLiteMetadataStore
from hamilton.caching.stores.file import FileResultStore

from hamilton.caching.stores.memory import InMemoryMetadataStore,
InMemoryResultStore

import my_dataflow

dr = (

driver.Builder()

.with_modules(my_dataflow)

.with_cache(
metadata_store=InMemoryMetadataStore(),
result_store=InMemoryResultStore(),

)

.build()

)

# execute the Driver several time. This will populate the in-memory
stores
dr.execute(...)

# persist to disk
dr.cache.metadata_store.persist_to(SQLiteMetadataStore(path="./.hamilton_cache")
dr.cache.result_store.persist_to(FileResultStore(path="./.hamilton_cache"))

Load cache

This snippet loads in-memory data from persisted metadata and result stores. The .load_from()
is a classmethod and returns an instance of the in-memory store. The method
InMemoryResultStore.load_from(...) must receive as argument a result store, but also a
metadata store or a list of data_version to load. This is because ResultStore implementations
don’t have a registry of stored results.

from hamilton import driver

from hamilton.caching.stores.sqlite import SQLiteMetadataStore
from hamilton.caching.stores.file import FileResultStore

from hamilton.caching.stores.memory import InMemoryMetadataStore,
InMemoryResultStore

import my_dataflow

# create persisted stores
metadata_store = SQLiteMetadataStore(path="./.hamilton_cache")
result_store = FileResultStore(path="./.hamilton_cache")

dr = (
driver.Builder()
.with_modules(my_dataflow)
.with_cache(
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# create in-memory stores by loading from persisted store

metadata_store=InMemoryMetadataStore.load_from(metadata_store),
result_store=InMemoryResultStore.load_from(
result_store=result_store,
metadata_store=metadata_store,

)
)
.build()
)
Roadmap

Caching is a significant Apache Hamilton feature and there are plans to expand it. Here are some
ideas and areas for development. Feel free comment on them or make other suggestions via Slack
or GitHub!

- Apache Hamilton Ul integration: caching introduces the concept of data_version. This
metadata could be captured by the Apache Hamilton Ul to show how different values are used
across dataflow executions. This would be particularly useful for experiment tracking and
lineage.

- Distributed caching support: the initial release supports multithreading and multiprocessing on
a single machine. For distributed execution, we will need ResultStore and MetadataStore that
can be remote and are safe for concurrent access.

- Integrate with remote execution (Ray, Skypilot, Modal, Runhouse): facilitate a pattern where the
dataflow is executed locally, but some nodes can selectively be executed remotely and have
their results cached locally.

- async support: Support caching with AsyncDriver . This requires a significant amount of code,
but the core logic shouldn’t change much.

- cache eviction: Allow to set up a max storage (in size or number of items) or time-based policy
to delete data from the metadata and result stores. This would help with managing the cache
size.

- more store backends: The initial release includes backend supported by the Python standard
library (SQLite metadata and file-based results). Could support more backends via fsspec (AWS,
Azure, GCP, Databricks, etc.)

- support more types: Include specialized hashing functions for complex objects from popular
libraries. This can be done through Apache Hamilton extensions.


https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
https://filesystem-spec.readthedocs.io/en/latest/?badge=latest
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Function modifiers (Advanced)

This page is a work in progress. Refer to the API reference for more documentation and please
ask a public question on Slack if you need help!

The page Function modifiers details how to use decorators to write expressive dataflows. The e
presented function modifiers are highly expressive and should be sufficient in the large majority
of cases.

Nonetheless, there exists higher level abstractions for power users that may be useful for
integrations with your existing platform. If you want to use complex machinery instead of writing 1
additional function, comeback when it's your 10th manually addition ¥

This page assumes an advanced understanding of Apache Hamilton and will cover:
- @pipe
- @subdag
- @parameterize_subdag

- @resolve

Dynamic DAGs/Parallel Execution

There are two approaches to parallel execution in Apache Hamilton:

1. Using an adapter that submits each node/function to a system that handles execution, e.g. ray,
dask, async, or a threadpool.

2. Using the Parallelizable[] and Collect[] types + delegating to an executor.

Using an Adapter

The adapter approach effectively farms out the execution of each node/function to a system that
can handle resolving futures. That is, Apache Hamilton walks the DAG and submits each node to
the adapter, which then submits the node for execution, and internally the execution resolves any
Futures from prior submitted nodes.


https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
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To make use of this, the general pattern is you apply an adapter to the driver and don’t need to
touch your Hamilton functions!:

from hamilton import driver

from hamilton.execution import executors

from hamilton.plugins.h_threadpool import FutureAdapter
# from hamilton.plugins.h_ray import RayGraphAdapter

# from hamilton.plugins.h_dask import DaskGraphAdapter

driver.Builder()
.with_modules(foo_module)
.with_adapter(FutureAdapter())
.build()

)

dr.execute(["my_variable"], inputs={...}, overrides={...})

The code above will execute the DAG submitting to a ThreadPoolExecutor (see
h_threadpool.FutureAdapter), which is great if you're doing a lot of I/O bound work, e.g. making
API calls, reading from a database, etc.

See this Threadpool based example for a complete example.

Other adapters, e.g. Ray h_ray.RayGraphAdapter, Dask h_dask.DaskGraphAdapter, etc... will submit
to their respective executors, but will involve object serialization (see caveats below).

Using the Parallelizable[] and Collect[] types

Apache Hamilton now has pluggable execution, which allows for the following:
1. Grouping of nodes into “tasks” (discrete execution unit between serialization boundaries)
2. Executing the tasks in parallel, using any executor of your choice

You can run this executor using the Builder, a utility class that allows you to build a driver piece
by piece. Note that you currently have to call
enable_dynamic_execution(allow_experimental_mode=True) which will toggle it to use the V2
executor. Then, you can:

1. Add task executors to specify how to run the tasks
2. Add node grouping strategies
3. Add modules to crawl for functions

4. Add a results builder to shape the results


https://github.com/apache/hamilton/blob/main/examples/parallelism/lazy_threadpool_execution/
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Either constructing the driver, or using the builder and not calling enable_dynamic_execution will
give you the standard executor. We highly recommend you use the builder pattern - while the
constructor of the Driver will be fully backwards compatible according to the rules of semantic
versioning, we may change it in the future (for 2.0).

Note that the new executor is required to handle dynamic creation of nodes (E.G. using
Parallelizable[] and Collect[].

Let's look at an example of the driver:

from my_code import foo_module, bar_module

from hamilton import driver
from hamilton.execution import executors

dr = (
driver.Builder()
.with_modules(foo_module)
.enable_dynamic_execution(allow_experimental_mode=True)
.with_config({"config_key": "config_value"})
.with_local_executor(executors.SynchronousLocalTaskExecutor())
.with_remote_executor(executors.MultiProcessingExecutor(max_tasks=5))
.build()

)

dr.execute(["my_variable"], inputs={...}, overrides={...})

Note that we set a remote executor, and a local executor. While you can bypass this and instead
set an execution_manager in the builder call (see Builder for documentation on the Builder)this
goes along with the default grouping strategy, which is to place each node in its own group, except
for dynamically generated (Parallelizable[]) blocks, which are each made into one group, and
executed locally.

Thus, when you write a DAG like this (a simple map-reduce pattern):

from hamilton.htypes import Parallelizable, Collect

def url() -> Parallelizable[str]:
for url_ in _list _all_urls():
yield url_

def url loaded(url: str) -> str:
return _load(urls)

def counts(url_loaded: str) -> int:
return len(url_loaded.split(" "))
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def total_words(counts: Collect[int]) -> int:
return sum(counts)

The block containing counts and url_loaded will get marked as one task, repeated for each URL in
url_loaded, and run on the remote executor (which in this case is the ThreadPoolExecutor).

Note that we currently have the following caveats:
1. No nested Parallelizable[]/ Collect[] blocks — we only allow one level of parallelization

2. Serialization for Multiprocessing is suboptimal — we currently use the default pickle serializer,
which breaks with certain cases. Ray, Dask, etc... all work well, and we plan to add support for
joblib + cloudpickle serialization.

3. Collect[] input types are limited to one per function - this is another caveat that we intend to
get rid of, but for now you'll want to concat/put into one function before collecting.

Known Caveats

If you're familiar with multi-processing then these caveats will be familiar to you. If not, then you
should be aware of the following:

Serialization
Challenge:

- Objects are by default pickled and sent to the remote executor, and then unpickled.

- This can be slow, and can break with certain types of objects, e.g. OpenAl Client, DB Client, etc.
Solution:

- Make sure that your objects are serializable.

- If you're using a library that doesn’t support serialization, then one option is to have Apache
Hamilton instantiate the object in each parallel block. You can do this by making the code
depend on something within the parallel block.

- Another option is write a custom wrapper function that uses __set_state__ and __get_state__ to
serialize and deserialize the object.

- See this issue for details and possible features to make this simpler to deal with.


https://github.com/apache/hamilton/issues/743
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Multiple Collects

Currently, by design (see all limitations here), you can only have one “collect” downstream of
“parallel”.

So the following code WILL NOT WORK:

import logging

from hamilton import driver

from hamilton.execution.executors import SynchronousLocalTaskExecutor
from hamilton.htypes import Collect, Parallelizable

import pandas as pd

ANALYSIS OB = tuple[tuple[str,...], pd.DataFrame]
ANALYSIS RES = dict[str, str | float]

def split_by_cols(full_data: pd.DataFrame, columns: list[str]) ->
Parallelizable[ANALYSIS OB]:
for idx, grp in full_data.groupby(columns):
vield (idx, grp)

def sub_metric_1(split_by_cols: ANALYSIS_OB, number: float=1.0) ->
ANALYSIS RES:

idx, grp = split_by_cols

return {"key": idx, "mean": grp["spend"].mean() + number}

def sub_metric_2(split_by_cols: ANALYSIS_OB) -> ANALYSIS_RES:
idx, grp = split_by_cols
return {"key": idx, "mean": grp["signups"].mean()}

def metric_1(sub_metric_1: Collect[ANALYSIS RES], columns:
list[str]) -> pd.DataFrame:

data = [[k for k in d["key"]] + [d["mean"], "spend"] for d in
sub_metric_1]

cols = list(columns) + ["mean", "metric"]

return pd.DataFrame(data, columns=cols)

def metric_2(sub_metric_2: Collect[ANALYSIS RES], columns:
list[str]) -> pd.DataFrame:

data = [[k for k in d["key"]] + [d["mean"], "signups"] for d in
sub_metric_2]

cols = list(columns) + ["mean", "metric"]

return pd.DataFrame(data, columns=cols)


https://github.com/apache/hamilton/issues/301
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# this will not work because you can't have two Collect[] calls
downstream from a Parallelizable[] call
def all_agg(metric_1: pd.DataFrame, metric_2: pd.DataFrame) ->
pd.DataFrame:

return pd.concat([metric_1, metric_2])

if __name__ == "__main__
from hamilton.execution import executors
import __main__

from hamilton.log_setup import setup_logging
setup_logging(log_level=1logging.DEBUG)

local_executor = executors.SynchronouslLocalTaskExecutor()

dr = (
driver.Builder()
.enable_dynamic_execution(allow_experimental_mode=True)
.with_modules(__main__)
.with_remote_executor(local_executor)
.build()
)
df = pd.DataFrame(
index=pd.date_range('20230101', '20230110'),
data=9{
"signups": [1, 10, 50, 100, 200, 400, 700, 800, 1000,

1300],
"spend": [10, 10, 20, 40, 40, 50, 100, 80, 90, 120],
"region": ["A", "B", "C", "A", "B", "C", "A", "B", "C",
lell]'
}
)
ans = dr.execute(
["all_agg"],
inputs={
"full _data": df,
"number": 3.1,
"columns": ["region"],
}
)

print(ans["all_agg"])

To fix this, (this is documented in this issue) you can either create a new function that combines
the two Collect[] calls that could be combined with @configwhen.

def all _metrics(sub_metric_1: ANALYSIS RES, sub_metric 2:
ANALYSIS RES) -> ANALYSIS RES:
return ... # join the two dicts in whatever way you want


https://github.com/apache/hamilton/issues/742
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def all_agg(all_metrics: Collect[ANALYSIS_RES]) -> pd.DataFrame:
return ... # join them all into a dataframe

Or you use @resolve, with @group (scroll down a little), @inject, to set what should be
determined to be collected at DAG construction time:

aresolve(
when=ResolveAt.CONFIG_AVAILABLE,
decorate_with= lambda metric_names:
inject( # this will annotate the function with @inject

# it will then inject a group of values corresponding to the sources
wanted
sub_metrics=group(*[source(x) for x in metric_names])

),
)
def all_metrics(sub_metrics: 1ist[ANALYSIS_RES], columns: list[str])
-> pd.DataFrame:
frames = []
for a in sub_metrics:

frames.append(_to_frame(a, columns))
return pd.concat(frames)

# then in your driver:

from hamilton import settings

_config = {settings.ENABLE_POWER_USER_MODE:True}
_config["metric_names"] = ["sub_metric_1", "sub_metric_2"]

# Then in the driver building pass in the configuration:
.with_config(_config)

Ul Overview

Apache Hamilton comes with a fully open-source Ul that can be run both for local deployment
and on a remote server. The Ul consists of the following features:

1. Telemetry for hamilton executions — both on the history of executions and the data itself.
2. A feature/artifact catalog for browsing/connecting executions of nodes -> results.
3. A dataflow (i.e. DAG) visualizer for exploring and looking at your code, and determining lineage.

4. A project explorer for viewing curating projects and viewing versions of your Apache Hamilton
dataflows.
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In short, the Apache Hamilton Ul aims to combine a large swath of MLOps/data observability
systems in one simple application.
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The Apache Hamilton Ul has two modes: 1. Run locally using sqlite3 2. Run on docker images with
postgres (meant for deployment)

Local Mode

To run the hamilton Ul in local mode, you can do the following:

pip install "sf-hamilton[ui,sdk]"
hamilton ui
# python -m hamilton.cli.__main__ uil # on windows

This will launch a browser window in localhost:8241. You can then navigate to the Ul and start
using it! While this can potentially handle a small production workflow, you may want to run on
postgres with a separate frontend/backend/db for full scalability and a multi-read/write db.
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Docker/Deployed Mode

The Apache Hamilton Ul can be contained within a set of Docker images. You launch with docker-
compose, and it will start up the Ul, the backend server, and a Postgres database. If you'd like a
quick overview of some of the features, you can watch the following:

Note: if you run into the “Invalid HTTP_HOST" error, then please set the environment variable
HAMILTON_ALLOWED_HOSTS="*" (or comma separated list of domains of choice) for the backend
docker container. You can inject this via -e or in the docker-compose[-prod]yml file itself.

Install

If you'd like a video walkthrough on getting set up, you can watch the following:

As prerequisites, you will need to have Docker installed - you can follow instructions here.

1. Clone the Apache Hamilton repository locally
git clone https://github.com/apache/hamilton
1. Navigate to the hamilton/ui directory
cd hamilton/ui
1. Execute the installation script with the following command
./run.sh

This will:
- Pull all Docker images from the Docker Hub
- Start a local Postgres database
- Start the backend server

- Start the frontend server


https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/engine/install/
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This takes a bit of time! So be patient. The server will be running on port 8242.

1. Then navigate to http://localhost:8242 in your browser, and enter your email (this will be the
username used within the app).

Building the Docker Images locally
If building the Docker containers from scratch, increase your Docker memory to 10gb or more -
you can do this in the Docker Desktop settings.

To build the images locally, you can run the following command:

# from the hamilton/ui directory
./dev.sh --build

This will build the containers from scratch. If you just want to mount the local code, you can run
just

./dev.sh

Self-Hosting

If you know docker, you should be good to go. The one environment variable to know is
HAMILTON_ALLOWED_HOSTS, which you can set to * to allow all hosts, or a comma separated list
of hosts you want to allow.

To host the Ul on a subpath, set REACT_APP_HAMILTON_SUB_PATH to the subpath required. For
example, to run on https://domain.com/hamilton:

- REACT_APP_HAMILTON_SUB_PATH=/hamilton

Make sure that the sub path environment variable begins with / if set.

Please reach out to us if you want to deploy on your own infrastructure and need help - join slack.
More extensive self-hosting documentation is in the works, e.g. Snowflake, Databricks, AWS, GCP,
Azure, etc.; we'd love a helm chart contribution!


https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
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Running on Snowflake

You can run the Apache Hamilton Ul on Snowflake Container Services. For a detailed guide, see
the blog post Observability of Python code and application logic with Apache Hamilton Ul on
Snowflake Container Services by Greg Kantyka and the Apache Hamilton Snowflake Example.

Get started

Now that you have your server running, you can run a simple dataflow and watch it in the Ul! You
can follow instructions in the Ul when you create a new project, or follow the instructions here.

First, install the SDK:
pip install "sf-hamilton[sdk]"

Then, navigate to the project page (dashboard/projects), in the running Ul, and click the green +
New DAG button.

Create a new project
Track execution of DAGs, visualize your pipelines, and understand how they change
over time!

Project Name

Demo project

Project Description

Project for hamiton Ul

Read Access

Enter emails or select teams you are a part of.

’ gelect...

Write Access

Enter emails or select teams you are a part of.

eljah@dagworks.io x

Remember the project ID - you'll use it for the next steps.

Existing Apache Hamilton Code

Add the following adapter to your code if you have existing Apache Hamilton code:


https://medium.com/@pkantyka/observability-of-python-code-and-application-logic-with-hamilton-ui-on-snowflake-container-services-a26693b46635
https://medium.com/@pkantyka/observability-of-python-code-and-application-logic-with-hamilton-ui-on-snowflake-container-services-a26693b46635
https://medium.com/@pkantyka
https://github.com/apache/hamilton/tree/main/examples/snowflake/hamilton_ui
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from hamilton_sdk import adapters

tracker = adapters.HamiltonTracker(
project_id=PROJECT_ID_FROM_ABOVE,
username="USERNAME/EMAIL_YOU_PUT_IN_THE_UI",
dag_name="my_version_of_the_dag",
tags={"environment": "DEV", "team": "MY_TEAM", "version": "X"}

)

dr = (
driver.Builder()
.with_config(your_config)
.with_modules(*your_modules)
.with_adapters(tracker)
.build()

Then run your DAG, and follow the links in the logs! Note that the link is correct if you're using the
local mode - if you're on postgres it links to 8241 (but you'll want to follow it to 8241).

| need some Apache Hamilton code to run

If you don't have Apache Hamilton code to run this with, you can run Apache Hamilton Ul example
under examples/hamilton_ui:

# we assume you're in the Apache Hamilton repository root

cd examples/hamilton_ui

# make sure you have the right python packages installed

pip install -r requirements.txt

# run the pipeline providing the email and project_id you created in
the UI

python run.py --email <email> --project_id <project_id>

You should see links in the logs to the Ul, where you can see the DAG run + the data summaries
captured.

Features

Once you get to the Ul, you can navigate to the projects page (left hand nav-bar). Assuming you
have created a project and logged to it, you can then navigate to view it and then more details
about it. E.g. versions, code, lineage, catalog, execution runs. See below for a few screenshots of
the UL


https://github.com/apache/hamilton/tree/main/examples/hamilton_ui
http://localhost:8242/dashboard/projects
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Dataflow versioning

Select a dataflow versions to compare and visualize.

L Model Training

_ ) Select tags to view. Compare 2 versiofll T X1
@10 Versions
[0 Catalog
Name... Code Hash DAG Hash Created Repository
©Structure
©Runs 180 &  machine_learning_dag ade97cfd-o. e245fed1-e DAGWorks-Inc/dagworks-examples

172 @ machine_learning_dag 2f273bdf-b. ed6a21fc-6. DAGWorks-Inc/dagworks-examples

171 @ machine_learning_dag 549862c2-0. 7029e602-0. DAGWorks-Inc/dagworks-examples

169 7 machine_learning_dag cd756707-7. b10a89a2-7. DAGWorks-Inc/dagworks-examples

170 @ machine_learning_dag 56442e0b-1 54c2daBa-c. DAGWorks-Inc/dagworks-examples

168 7 machine_learning_dag eeef55ec-8 ca673efd-6. DAGWorks-Inc/dagworks-examples X Archive

<0, eljah@dagworks.io
dagworks

Assets/features catalog

View functions, nodes, and assets across a history of runs.

Search for nodes, functions, etc

Versions
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z L8 petal_length_cm_log f petallength_cm_log  Log value of petal_length_cm. module components.feature_transforms
# 48 petal_length_cm_mean f mean_value Mean of petal_length_cm. module components.feature_transforms
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Browser

View dataflow structure and code.
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machine_learning_dag > code
feature. epal_length_cm_log 0OIY¥
def sepal_length_cm_log(sepal_length_cm: pd.Series) —> pd.Series:
“uLog value of sepal_length_cm.""*
return np. log(sepal_length_cm)
WY = sepal_length_cm
RNy ~ scpal_length_cm_log
feature._ epal_width_cm_log 0OIY¥
def sepal_width_cm_log(sepal_width_cm: pd.Series) -> pd.Series:
“ulog value of sepal_width_cm. """
return np.log(sepal_width_cm)
input
output
components.feature_transforms.std_value 0OIY¥
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prefit_clf.fit(X_train, y_train)
return prefit_clf
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v.180
©u[0) Versions v [ ML Model Training
v [ components.feature_transforms
[1] catalog > fx data_set_v1
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Code > fx normalized_value
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> f testing_accuracy
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Run tracking + telemetry

View a history of runs, telemetry on runs/comparison, and data for specific runs:
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SDK Configuration

This section documents HamiltonTracker configuration options.
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You can change where telemetry is logged by passing in hamilton_api_url and/or hamilton_ui_url
to the HamiltonTracker constructor. By default, these are set to localhost:8241/8242.

from hamilton_sdk import adapters

tracker

adapters.HamiltonTracker(

project_id=PROJECT_ID_FROM_ABOVE,
username="USERNAME/EMAIL_YOU_PUT_IN_THE UI",
dag_name="my_version_of_the_dag",
tags={"environment": "DEV", "team": "MY_TEAM", "version": "X"},
hamilton_api_url="http://YOUR_DOMAIN_HERE:8241",
hamilton_ui_url="http://YOUR_DOMAIN_HERE:8242" # if using docker
the UI is on 8242.

)

dr = (

driver.Builder()
.with_config(your_config)
.with_modules(*your_modules)

.with_adapters(tracker)
.build()
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Changing behavior of what is captured

By default, a lot is captured and sent to the Apache Hamilton UL

Here are a few options that can change that - these can be found in
hamilton_sdRk.tracking.constants. You can either change the defaults by directly changing the
constants, by specifying them in a config file, or via environment variables.

Here we first explain the options:

Simple Invocation

Option Default Explanation

CAPTURE_DATA_STATISTICS True Whether to capture any data insights/
statistics

MAX_LIST _LENGTH_CAPTURE 50 Max length for list capture

MAX_DICT_LENGTH_CAPTURE 100 Max length for dict capture

DEFAULT_CONFIG_URI ~[.hamilton.conf  Default config file URI.

To change the defaults via a config file, you can do the following:

[ SDK_CONSTANTS]
MAX_LIST_LENGTH_CAPTURE=100
MAX_DICT_LENGTH_CAPTURE=200

# save this to ~/.hamilton.conf

To change the defaults via environment variables, you can do the following, prefixing them with
HAMILTON_:

export HAMILTON_MAX_LIST_LENGTH_CAPTURE=100
export HAMILTON_MAX_DICT_LENGTH_CAPTURE=200
python run_my_hamilton_code.py

To change the defaults directly, you can do the following:
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from hamilton_sdk.tracking import constants

constants.MAX_LIST_LENGTH_CAPTURE
constants.MAX_DICT_LENGTH_CAPTURE

100
200

tracker = adapters.HamiltonTracker(
project_id=PROJECT_ID_FROM_ABOVE,
username="USERNAME/EMAIL_YOU_ PUT_IN_THE UI",
dag_name="my_version_of_the_dag",
tags={"environment": "DEV", "team": "MY_TEAM", "version": "X"}
)
dr = (
driver.Builder()
.with_config(your_config)
.with_modules(*your_modules)
.with_adapters(tracker)
.build()
)

dr.execute(...)

In terms of precedence, the order is:
1. Module default.

2. Config file values.

3. Environment variables.

4. Directly set values.

Best Practices

A set of best-practices to help you get the most out of Apache Hamilton quickly and easily.

Function Naming

Here are three important points about function naming:
1. It enables you to define your Apache Hamilton dataflow.
2. It drives collaboration & code reuse.

3. It serves as documentation itself.
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You don't need to get this right the first time — search and replace is really easy with Apache
Hamilton code bases - but it is something to converge thinking on!

It enables you to define your Apache Hamilton dataflow

As the name of a hamilton function defines the name of the created artifact, naming is vital to a
readable, extensible hamilton codebase. Names must mean something:

def foo_bar(inputl: int, input2: pd.Series) -> pd.Series:
Illllldocs...llllll

In this case, foo_bar is not helpful - it's unclear what this function produces at all. Remember
you want function names to mean something, since that will enable clarity when using Apache
Hamilton, what is being requested, and will help document what the function itself is doing.

It drives collaboration and reuse
When people come to encounter your code, they'll need to understand it, add to it, modify it, etc.

You'll want to ensure some standardization to enable:

1. Mapping business concepts to function names. E.g. That will help people to find things in the
code that map to things that happen within your business.

2. Ensuring naming uniformity across the code base. People usually follow the precedent of the
code around them, so if everything in a particular module for say, date features, has a D_
prefix, then they will likely follow that naming convention. This is likely something you will
iterate on — and it's best to try to converge on a team naming convention once you have a feel
for the Hamilton functions being written by the team.

We suggest that long functions names that are separated by _ aren’t a bad thing. E.g. if you were
to come across a function named life_time_value versus ltv versus 1_t_v, which one is more
obvious as to what it is and what it represents?

It serves as documentation itself

Remember your code usually lives a lot longer that you ever think it will. So our suggestion is to
always err to the more obvious way of naming to ensure it's clear what a function represents.

Again, if you were to come across a function named life_time_value versus
1tv" versus ~“1_t_v, which one is more obvious as to what it is and what it represents?
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Migrating to Apache Hamilton

Here are two suggestions for helping you migrate to Apache Hamilton

Continuous Integration for Comparisons

Create a way to easily & frequently compare results.
1. Integrate with continuous integration (Cl) system if you can.

2. S0%, Having a means that tests code early & often will helps diagnose bugs in your old code
(most likely) or your new implementation (less likely).

3. Specifically, have a system to compare the output of your Apache Hamilton code, to compare to
the output of your existing system.

l—Debug function or comparison output

Write . . . Fail
function Commit || CI Kicks off job
T Pass
Start on next function

Integrate into your code base via a “custom wrapper object”

If you have existing systems that you want to integrate Apache Hamilton into, it might require
non-trivial effort for you to change those systems to be able to use Apache Hamilton. If that's the
case, then we suggest creating a “custom object” to “wrap” Apache Hamilton, so that it's easier to
migrate to it.

Specifically, this custom wrapper object class’s purpose is to match your existing APl expectations.
It will act as the translation layer from your existing APl expectations, to what running Apache
Hamilton requires, and back. In Apache Hamilton terminology, this is a Custom Driver Wrapper,
since it wraps around the Hamilton Driver class.
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Your Wrapper Driver Class

Your Hamilton Driver Your
existing f—» ——»| expected

: Python

inputs Modules output

This is a best practice because:

1. When migrating, it's best to avoid making too many changes. So don’t change your API
expectations if you can.

2.1t allows you to easily insert Apache Hamilton into any context. Thereby minimizing potential
migration problems.

Code Organization

Apache Hamilton will force you to organize your code! Here's some tips.

Apache Hamilton forces you to put your code into modules that are distinct from where you run
your code.

You'll soon find that a single python module does not make sense, and so you'll organically start
to (very likely) put like functions with like functions, i.e. thus creating domain specific modules —>
use this to your development advantage!

At Stitch Fix we:
1. Use modules to model team thinking, e.g. date_features.py.
2. Use modules to helps isolate what you're working on.

3. Use modules to replace parts of your Apache Hamilton dataflow very easily for different
contexts.

Team thinking

You'll need to curate your modules. We suggest orienting this around how teams think about the
business.

E.g. marketing spend features should be in the same module, or in separate modules but in the
same directory/package.
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This will then make it easy for people to browse the code base and discover what is available.

Helps isolate what you're working on

Grouping functions into modules then helps set the tone for what you're working on. It helps set
the “namespace”, if you will, for that function. Thus you can have the same function name used in
multiple modules, as long as only one of those modules is imported to build the DAG.

Thus modules help you create boundaries in your code base to isolate functions that you'll want
to change inputs to.

Enables you to replace parts of your DAG easily for different contexts

The names you provide as inputs to functions form a defined “interface”, to borrow a computer
science term, so if you want to swap/change/augment an input, having a function that would map
to it defined in another module(s) provides a lot of flexibility. Rather than having a single module
with all functions defined in it, separating the functions into different modules could be a
productivity win.

Why? That's because when you come to tell Apache Hamilton what functions constitute your
dataflow (i.e. DAG), you'll be able to simply replace/add/change the module being passed. So if
you want to compute inputs for certain functions differently, this composability of including/
excluding modules, when building the DAG provides a lot of flexibility that you can exploit to make
your development cycle faster.

Common Indices

If you're creating dataframes, then this will apply to you!

While Apache Hamilton is a general-purpose framework, we've found a common pattern is to
manipulate datasets that have shared indices (spines) for creating dataframes.

Although this might not apply towards every use-case (E.G. more complex joins with spark
dataframes), a large selection of use-cases can be enabled if every dataframe in your pipeline
shares an index. This is particularly pertinent when writing transformations over (non-event-
based) time-series data.

While Apache Hamilton currently has no means of enforcing shared-spine, it is up to the writer of
the function to validate input data as necessary. Thus we recommend the following if you are
creating a dataframe as output:
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Best practice:

1. Load data via functions, defined in their own specific module.

2. Take that loaded data, and transform/ensure indexes match the output you want to create.
3. Continue with transformations.

For time-series modeling, this will mean you provide a common time-series index. Or, if you're
creating features for input to a classification model, e.g. over clients, then ensure the index is
client_ids.

Output Immutability

In Apache Hamilton, functions are only called once!

Immutability means, that once a “data structure”, e.g. a column is created, and output by a
function, the values in the column are not changeable.

When Apache Hamilton figures out the execution call path, it walks it and calls functions only
once. This means, that if the output of a function is immutable, then there’s only one place it was
created; it's not modified anywhere else. This provides a great debugging experience if there are
ever issues in your dataflow. We believe that by default, one should always strive for immutability
of outputs.

However, it is up to you, the Hamilton function writer, to ensure that immutability is something
that is adhered to.

Best practice:

1. To preserve “immutability” of outputs, don’'t mutate passed in data structures. e.g. if you get
passed in a pandas series, don’t mutate it.

1. Test for this in your unit tests if this is something important to you!
2. Otherwise YMMV with debugging:

1. Clearly document mutating inputs in your function documentation if you do mutate inputs
provided. That will make debugging your code that much simpler!
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Using within your ETL System

Conceptually you can integrate Apache Hamilton within your existing ETL system quite easily:

Compatibility Matrix

Title

Framework /

Scheduler Compatibility

Airflow (see [airflow example](https://github.com/apache/hamilton/
tree/main/examples/airflow))

Dagster

Prefect (see [prefect example](https://github.com/apache/hamilton/
tree/main/examples/prefect))

Kubeflow Pipelines

CRON

dbt (see dbt example)

kubernetes but you need to setup kubernetes to run an image that can run
python code - e.g. see Running a python application on kubernetes

docker but you need to setup a docker image that can execute python

code.

.. in general if it runs
python 3.7+ ...


http://airflow.org
https://github.com/apache/hamilton/tree/main/examples/airflow
https://github.com/apache/hamilton/tree/main/examples/airflow
https://dagster.io
https://prefect.io
https://github.com/apache/hamilton/tree/main/examples/prefect
https://github.com/apache/hamilton/tree/main/examples/prefect
https://www.kubeflow.org/docs/components/pipelines
https://en.wikipedia.org/wiki/Cron
https://getdbt.com
https://kubernetes.io
https://medium.com/avmconsulting-blog/running-a-python-application-on-kubernetes-aws-56609e7cd88c
https://www.docker.com
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ETL Recipe

1. Write Hamilton functions & “driver” code.

2. Publish your Hamilton functions in a package, or import via other means (e.g. checkout a
repository & include in python path).

3. Include sf-hamilton as a python dependency
4. Have your ETL system execute your “driver” code.

5. Profit.

Loading Data

In Apache Hamilton, data loaders are just the same as other functions in the DAG. They take in
configuration parameters, and output datasets in the desired form. Following up on the marketing
spend dataset, you might write a data loader that reads a dataframe saved in csv format on s3 like
this:

import boto3
import urllib
import pandas as pd

from hamilton.function_modifiers import extract_columns
client = boto3.client("s3")

dextract_columns('coll', 'col2', 'col3', ...)
def marketing_spend(marketing_spend_data_path: str) -> pd.DataFrame:
"""Loads marketing spend from specified path on s3
if not marketing_spend_data_path.startswith("s3://"):
raise ValueError(f"Invalid s3 URI
{marketing_spend_data_path}")
return pd.read_csv(
marketing_spend_data_path,
storage_options = {...}) # See https://pandas.pydata.org/
docs/reference/api/pandas.read_csv.html#pandas-read-csv for more info

Loading data is as easy as that! Run your driver with marketing_spend_data_path as a parameter,
and you're good to go. However, there are a few considerations you might have prior to
productionalizing this dataflow...
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Plugging in new Data Sources

An advantage of Apache Hamilton is that it allows for rapid plug-and play for various components
of your pipeline. This is particularly important for data loading, where you might want to load your
data from different sources depending on some context. For instance - if you're running your
pipeline in production, you may want to use the production data sources. If you're running it in
QA, you might want to use the staging data sources. Or, if you're running it locally, you might want
to use abbreviated, in-memory data sources for testing. While Apache Hamilton is not opinionated
on exactly _how_ you make this switch, it presents a variety of tooling that can make it more
manageable. Some options. To demonstrate some techniques, let's continue on the example of
loading marketing spend...

Modules as Interfaces

Say you have multiple data-loading nodes in your DAG. One strategy is to put them all in a single
module. That way, if you want to load them up from different sources, you can simply switch the
module your driver utilizes. Taking the example from above, you might have the following
modules

@extract_columns('coll', 'col2', 'col3', ...)
def marketing_spend(marketing_spend_data_path: str) -> pd.DataFrame:
"""Loads marketing spend from specified path on s3
if not marketing_spend_data_path.startswith("s3://"):
raise ValueError(f"Invalid s3 URI
{marketing_spend_data_path}")
return pd.read_csv(
marketing_spend_data_path,
storage_options = {...}) # See https://pandas.pydata.org/
docs/reference/api/pandas.read_csv.html#pandas-read-csv for more info

dextract_columns('coll', 'col2', 'col3', ...)
def marketing_spend(marketing_spend_data_path: str) -> pd.DataFrame:
"""lLoads marketing spend from specified path on s3
if not marketing_spend_data_path.endswith("csv"):
raise ValueError(f"Invalid local data loading target
{marketing_spend_data_path}")
if not os.path.exists(marketing_spend_data_path):
raise ValueError(f"Path does not exists")
return pd.read_csv(marketing_spend_data_path)

Then, in your driver, you can choose between which module you want to use:
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local_data_driver = Driver(config, local_data_loaders, ...)
prod_data_driver = Driver(config, prod_data_loaders, ...)

Using the Config to Decide Sources

Note that we can utilize the config to determine where the data comes from as well. By using
config.when you can arrive at the same effect as above, while making it entirely config driven. If
you combine the two functions into the same module with @config.when it will look as follows:

aconfig.when(data_source="'local')

oextract_columns('coll', 'col2', 'col3', ...)

def marketing_spend__local(marketing_spend_data_path: str) ->
pd.DataFrame:

aconfig.when(data_source="prod')

@extract_columns('coll', 'col2', 'col3', ...)

def marketing_spend__prod(marketing_ spend_data_path: str) ->
pd.DataFrame:

Then you can invoke your driver but set the config differently:

driver = Driver(
{'data_source' : 'prod', 'marketing_spend_data_path'
's3://..."},

data_loaders, ...)

Note that there are a variety of other ways you can organize your code — at this point its entirely
use-case dependent. Apache Hamilton is a language for declaring dataflows that's applicable
towards a multitude of use-cases. It's not going to dictate how to write your functions or where
you put them.
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User Guide

This portion of the documentation goes over the set of common examples for Apache Hamilton
usage, so you can apply it to your day-to-day work. Each one corresponds to an example in the
examples directory. If there's an example you want but don’t see, reach out or open an issue on
github — we're always looking to add more.

Jupyter notebooks

There are two main ways to use Apache Hamilton in a notebook.
1. Dynamically create modules within the notebook.

2. Import modules into the notebook.

1 - Dynamically create modules within your notebook

There's two main ways, using the Hamilton Jupyter magic, or using ad_hoc_utils to create a
temporary module.

Use Hamilton Jupyter Magic

The Hamilton Jupyter magic allows you to dynamically create a module from a cell in your
notebook. This is useful for quick iteration and development. Once you're then happy, it's easy to
then write out a module with the functions you've developed using %%writefile magic.

To load the magic:

# load some extensions / magic...
%load_ext hamilton.plugins.jupyter_magic

Then to use it:
%%cell_to_module -m MODULE_NAME # more args

To see help on the magic, you can run %%cell_to_module --help, Or just ?%%cell_to_module in a
cell.


https://github.com/apache/hamilton/tree/main/examples
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It should output information similar to the following:

-m, -module_name: Module name to provide. Default is jupyter_module. -c, —config: JSON config
string, or variable name containing config to use. -r, —rebuild-drivers: Flag to rebuild drivers. -d, -
display: Flag to visualize dataflow. -v, —verbosity: of standard output. 0 to hide. 1is normal, default.

Example use:

%%cell_to_module -m MODULE_NAME --display --rebuild-drivers

def hello() -> str:
return "hello"

def world(hello: str) -> str:
return f"{hello} world"

Once you're happy with the functions you've developed, you can then write them out to a module
using the %%writefile magic:

%%writefile hello_world.py

Importing specific functions into cell modules

If you import parts of modules in a Hamilton Jupyter Magic cell, these will need to be reloaded
when changes are made to their source. This can be done either by restarting the kernel or with
the help of importlib.reload:

%%cell_to_module MODULE_NAME

# first import the module itself, so it can be reloaded
import my_common_functions

# reload the module

import importlib
importlib.reload(my_common_functions)

# now import the specific function from the module
from my_common_functions import commonfunction

# use the imported function
commonfunction()
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Using ad_hoc_utils to create a temporary module (e.g. use in google
colab)

You have the ability to inline define functions with your driver that can be used to build a DAG. We
strongly recommend only using this approach when absolutely necessary — it's very easy to build
spaghetti code this way.

For example, say we want to add a function to compute the logarithm of avg_3wk_spend and not
add it to some_functions.py, we can do the following steps directly in our notebook:

# Step 1 - define function
import numpy as np

def log_avg 3wk_spend(avg_3wk_spend: pd.Series) -> pd.Series:
"""Simple function taking the logarithm of spend over signups.
return np.log(avg_3wk_spend)

We then have to create a “temporary python module” to house it in. We do this by importing
ad_hoc_utils and then calling the create_temporary_module function, passing in the functions
we want, and providing a name for the module we're creating.

# Step 2 - create a temporary modeul to house all notebook functions

from hamilton import ad_hoc_utils

temp_module = ad_hoc_utils.create_temporary_module(
log_avg_3wk_spend, module_name='function_example')

You can now treat temp_module like a python module and pass it to your driver and use Hamilton
like normal:

# Step 3 - add the module to the driver and continue as usual
dr = driver.Driver(config, some_functions, temp_module)

df = dr.execute(['avg 3wk_spend', 'log_avg 3wk_spend'],
inputs=input_data)

Caveat with this approach:

Using a “temporary python module” will not enable scaling of computation by using Ray, Dask, or
Pandas on Spark. So we suggest only using this approach for development purposes only.

2 - Importing modules into your notebook

This tutorial can also be found published on TDS.


https://towardsdatascience.com/how-to-iterate-with-hamilton-in-a-notebook-8ec0f85851ed
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Step 1 — Install Jupyter & Apache Hamilton

| assume you already have this step set up. But just in case you don't:

pip install jupyterlab
pip install sf-hamilton

Then to start the notebook server it should just be:

Step 2— Set up the files

1. Start up your Jupyter notebook.
2. Go to the directory where you want your notebook and Hamilton function module(s) to live.

3. Create a python file(s). Do that by going to “New > text file”. It'll open a “file” editor view. Name
the file and give it a .py extension. Once you save it, you'll see that jupyter now provides
python syntax highlighting. Keep this tab open, so you can flip back to it to edit this file.

4. Start up a notebook that you will use in another browser tab.

Step 3— The basic process of iteration

At a high level, you will be switching back and forth between your tabs. You will add functions to
your Hamilton function python module, and then import/reimport that module into your
notebook to get the changes. From there you will then use Apache Hamilton as usual to run and
execute things and the notebook for all the standard things you use notebooks for.

Let's walk through an example.

Here's a function | added to our Hamilton function module. | named the module
some_functions.py (obviously choose a better name for your situation).

import pandas as pd

def avg 3wk_spend(spend: pd.Series) -> pd.Series:
"""Rolling 3 week average spend."""
print("foo") # will use this to prove it reloaded!
return spend.rolling(3).mean()

And here’s what | set up in my notebook to be able to use Hamilton and import this module:

Cell 1: This just imports the base things we need; see the pro-tip at the bottom of this page for
how to automatically reload changes.
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import importlib
import pandas as pd
from hamilton import driver

Cell 2: Import your Hamilton function module(s)

# import your hamilton function module(s) here
import some_functions

Cell 3: Run this cell anytime you make and save changes to some_functions.py

# use this to reload the module after making changes to it.
importlib.reload(some_functions)

What this will do is reload the module, and therefore make sure the code is up to date for you to
use.

Cell 4: Use Hamilton

config = {}

dr = driver.Driver(config, some_functions)

input_data = {'spend': pd.Series([0®, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])}
df = dr.execute(['avg 3wk _spend'], inputs=input_data)

You should see foo printed as an output after running this cell.

Okay, so let's now say we're iterating on our Hamilton functions. Go to your Hamilton function
module ( some_functions.py in this example) in your other browser tab, and change the
print("foo") to something else, e.g. print("foo-bar"). Save the file — it should look
something like this:

def avg 3wk_spend(spend: pd.Series) -> pd.Series:
"""Rolling 3 week average spend."""
print("foo-bar")
return spend.rolling(3).mean()

Go back to your notebook, and re-run Cell 3 & Cell 4. You should now see a different output
printed, e.g. foo-bar .

Congratulations! You just managed to iterate on Apache Hamilton using a Jupyter notebook!
To summarize this is how things ended up looking on my end:

- Here’s what my some_functions.py file looks like:
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" Jupyter some_functions.py 21 minutes ago

File Edit View Language

import pandas as pd

1
2
o
4 def avg 3wk spend(spend: pd.Series) -> pd.Series:
5 """Rolling 3 week average spend."""

6 print (" foo-bar")

7 return spend.rolling(3).mean()

- Here’s what my notebook looks like

In [ ]: import importlib
import pandas as pd

from hamilton import driver

In [ ]: # import your hamilton function module(s) here
import some_ functions

In [ ]: # use this to reload the module after making changes to it.
importlib.reload(some_functions)

In [ ]: # use hamilton -- re-run this if you changed the functions
config = {}
dr = driver.Driver(config, some functions)
input_data = {'spend': pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])}
df = dr.execute(['avg 3wk spend'], inputs=input data)

In [ ]: print(df)

In [ ]: # carry on with your notebook

Pro-tip: You can use ipython magic to autoreload code

Open a Python module and a Jupyter notebook side-to-side, and then add %autoreload ipython
magic to the notebook to auto-reload the cell:

from hamilton.driver import Driver

# load extension
%load_ext autoreload
# configure autoreload to only affect specified files


https://ipython.org/ipython-doc/3/config/extensions/autoreload.html
https://ipython.org/ipython-doc/3/config/extensions/autoreload.html
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%autoreload 1

# import & specify my_module to be reloaded

# 1.e. this 1s the data transformation module that I have open 1in
other tab

%aimport my_module

hamilton_driver = Driver({}, my_module)
hamilton_driver.execute(['desired_outputl', 'desired_output2'])

You'd then follow the following process:
1. Write your data transformation in the open python module
2. In the notebook, instantiate a Hamilton Driver and test the DAG with a small subset of data.

3. Because of %autoreload, the module is reimported with the latest changes each time the
Hamilton DAG is executed. This approach prevents out-of-order notebook executions, and
functions always reside in clean .py files.

Credit: Thierry Jean’s blog post.

Pro-tip: You can import functions directly
The nice thing about forcing Hamilton functions into a module, is that it's very easy to re-use in
another context. E.g. another notebook, or directly.

For example, it is easy to directly use the functions in the notebook, like so:

some_functions.avg_3wk_spend(pd.Series([0O, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10]))

Which calls the avg_3wk_spend function we defined in the some_functions.py module.

Loading data

While we've been injecting data in from the driver in previous examples, Hamilton functions are
fully capable of loading their own data. In the following example, we'll show how to use Apache
Hamilton to:

1. Load data from an external source (CSV file and duckdb database)

2. Alter the source of data depending on how the DAG is parameterized/created


https://medium.com/@thijean/the-perks-of-creating-dataflows-with-hamilton-36e8c56dd2a
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3. Mock data for a test-setting (so you can quickly execute your DAG without having to wait for
data to load)

See the full tutorial here.

Licensed to the Apache Software Foundation (ASF) under one or more contributor license
agreements. See the NOTICE file distributed with this work for additional information regarding
copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the
“License”); you may not use this file except in compliance with the License. You may obtain a copy
of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and
limitations under the License.

Caching

In Hamilton, caching broadly refers to “reusing results from previous executions to skip redundant
computation”. If you change code or pass new data, it will automatically determine which results
can be reused and which nodes need to be re-executed. This improves execution speed and
reduces resource usage (computation, API credits, etc.).

Open the notebook in Google Colab for an interactive version and better syntax highlighting.

Throughout this tutorial, we’ll be using the Hamilton notebook extension to define dataflows
directly in the notebook (see tutorial).

from hamilton import driver

# load the notebook extension
%reload_ext hamilton.plugins.jupyter_magic

We import the logging module and get the logger from hamilton.caching . With the level set to
INFO, we'll see GET_RESULT and EXECUTE_NODE cache events as they happen.

import logging


https://github.com/apache/hamilton/tree/main/examples/data_loaders
https://colab.research.google.com/github/DAGWorks-Inc/hamilton/blob/main/examples/caching/tutorial.ipynb
https://github.com/apache/hamilton/blob/main/examples/jupyter_notebook_magic/example.ipynb
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logger = logging.getlLogger("hamilton.caching")
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler())

The next cell deletes the cached data to ensure this notebook can be run from top to bottom
without any issues.

import shutil

shutil.rmtree("./.hamilton_cache", ignore_errors=True)

Basics

Throughout this notebook, we'll use the same simple dataflow that processes transactions in
various locations and currencies

We use the cell magic %%cell_to_module from the Hamilton notebook extension. It will convert
the content of the cell into a Python module that can be loaded by Hamilton. The --display flag
allows to visualize the dataflow.

%%cell_to_module basics_module --display
import pandas as pd

DATA = {

"cities": ["New York", "Los Angeles", "Chicago", "Montréal",
"Vancouver"],

"date": ["2024-09-13", "2024-09-12", "2024-09-11", "2024-09-11",
"2024-09-09"],

"amount": [478.23, 251.67, 989.34, 742.14, 584.56],

"country": ["USA", "USA", "USA", "Canada", "Canada"l],

"currency": ["UsSD", "usb", "usb", "CAD", "CAD"],

}

def raw_data() -> pd.DataFrame:
"""lLoading raw data. This simulates loading from a file,

database, or external service.
return pd.DataFrame(DATA)

def processed_data(raw_data: pd.DataFrame, cutoff_date: str) ->
pd.DataFrame:

"""Filter out rows before cutoff date and convert currency to
USD. nmmnn

df = raw_data.loc[raw_data.date > cutoff_date].copy()

df["amound_in_usd"] = df["amount"]
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df.loc[df.country == "Canada", "amound_in_usd"] *= 0.73
return df

1IIIIIHIHIHID

raw_data

Dataframe processed_data

|- DataFrame
cutoff date str i
1

Then, we build the bpriver with caching enabled and execute the dataflow.

basics_dr =
driver.Builder().with_modules(basics_module).with_cache().build()

basics_results_1 = basics_dr.execute(["processed _data"],
inputs={"cutoff_date": "2024-09-01"})

print()

print(basics_results_1["processed_data"].head())

raw_data::adapter::execute_node
processed_data::adapter::execute_node

cities date amount country currency amound_in_usd
0 New York 2024-09-13 478.23 USA usb 478.2300
1 Los Angeles 2024-09-12 251.67 USA usbD 251.6700
2 Chicago 2024-09-11 989.34 USA usbD 989.3400
3 Montréal 2024-09-11 742.14 Canada CAD 541.7622
4 Vancouver 2024-09-09 584.56 Canada CAD 426.7288

We can view what values were retrieved from the cache using dr.cache.view_run() . Since this
was the first execution, nothing is retrieved.
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basics_dr.cache.view _run()

raw_data

DataFrame

processed _data

DataFrame

1
cutoff date str i
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On the second execution, processed_data is retrieved from cache as reported in the logs and

highlighted in the visualization

basics_results_2 = basics_dr.execute(["processed _data"],
inputs={"cutoff_date": "2024-09-01"})

print()

print(basics_results_2["processed_data"].head())

print()
basics_dr.cache.view_run()

raw_data::result_store::get_result::hit

processed_data::result_store::get_result::hit

cities date

New York 2024-09-13
Los Angeles 2024-09-12
Chicago 2024-09-11
Montréal 2024-09-11
Vancouver 2024-09-09

~WNRER OO

amount country currency

478.23 USA
251.67 USA
989.34 USA

742 .14 Canada
584.56 Canada

usbD
usbD
usb
CAD
CAD

amound_in_usd
478.2300
251.6700
989.3400
541.7622
426.7288
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(from cache)

raw_data

Dataframe processed data

DataFrame

1
cutoff_date str i
1

Understanding the cache_key
The Hamilton cache stores results using a cache_key. It is composed of the node's name
( node_name ), the code that defines it ( code_version ), and its data inputs ( data_version of its

dependencies).

For example, the cache keys for the previous cells are:

"node_name": "raw_data",

"code_version":
"9d727859b9fd883247c3379d4d25a35af4a56df9d9fde20c75¢c6375dde631c68",

"dependencies_data_versions": {} // it has no dependencies

}
{

"node_name": "processed_data",
"code_version":
"c9e3377d6c5044944bd89eeb7073¢c730ee8707627c39906b4156c6411f056f00",
"dependencies_data_versions": {
"cutoff_date": "WkGjJythLWYAIj2Qr8T_ug==", // input value

"raw_data”": "t-BDcMLikFSNdn4piUKylmBcKPoEsnsYjUNzWg==" //
raw_data's result
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Results could be successfully retrieved because nodes in the first execution and second execution
shared the same cache_key .

The cache_key objects are internal and you won't have to interact with them directly. However,
keep that concept in mind throughout this tutorial. Towards the end, we show how to manually
handle the cache_key for debugging.

Adding a node

Let's say you're iteratively developing your dataflow and you add a new node. Here, we copy the
previous module into a new module named adding_node_module and define the node

amount_per_country .

In practice, you would edit the cell directly, but this makes the notebook easier to
read and maintain

%%cell_to_module adding_node_module --display
import pandas as pd

DATA = {
"cities": ["New York", "Los Angeles", "Chicago", "Montréal",
"Vancouver"],
"date": ["2024-09-13", "2024-09-12", "2024-09-11", "2024-09-11",
"2024-09-09"1,
"amount": [478.23, 251.67, 989.34, 742.14, 584.56],
"country": ["USA", "USA", "USA", "Canada", "Canada"],
"currency": ["USD", "USD", "USD", "CAD", "CAD"],
}

def raw_data() -> pd.DataFrame:

"""lLoading raw data. This simulates loading from a file,
database, or external service."""

return pd.DataFrame(DATA)

def processed_data(raw_data: pd.DataFrame, cutoff_date: str) ->
pd.DataFrame:
"""Filter out rows before cutoff date and convert currency to
usp."""
df = raw_data.loc[raw_data.date > cutoff_date].copy()
df["amound_in_usd"] = df["amount"]
df.loc[df.country == "Canada", "amound_in_usd"] *= 0.73
return df

def amount_per_country(processed_data: pd.DataFrame) -> pd.DataFrame:
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Sum the amount in USD per country
return processed_data.groupby("country")
["amound_in_usd"].sum().to_frame()

llilliiiil'

raw_data

Dataframe processed data amount_per_country

mmmmmmmmmmm e DataFrame DatafFrame
cutoff date str i
I

We build a new Driver with adding_node_module and execute the dataflow. You'll notice that
raw_data and processed_data are retrieved and only amount_per_country is executed.

adding_node_dr =
driver.Builder().with_modules(adding_node_module).with_cache().build()

adding_node_results = adding_node_dr.execute(
["processed_data", "amount_per_country"],
inputs={"cutoff_date": "2024-09-01"}

)

print()

print(adding_node_results["amount_per_country"].head())

print()

adding_node_dr.cache.view_run()

raw_data::result_store::get_result::hit
processed_data::result_store::get_result::hit
amount_per_country::adapter::execute_node

amound_in_usd
country
Canada 968.491
USA 1719.240
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(from cache)

raw_data

Dataframe processed_data amount_per_country

DataFrame DataFrame

Even though this is the first execution of adding_node_dr and the module adding_node_module,
the cache contains results for raw_data and processed _data. We're able to retrieve values
because they have the same cache keys (code version and dependencies data versions).

This means you can reuse cached results across dataflows. This is particularly useful with training
and inference machine learning pipelines.

Changing inputs

We reuse the same dataflow adding_node_module, but change the input cutoff_date from
"2024-09-01" tO "2024-09-11".

This new input forces processed_data to be re-executed. This produces a new result for
processed_data , which cascades and also forced amount_per_country to be re-executed.

changing_inputs_dr =
driver.Builder().with_modules(adding_node_module).with_cache().build()

changing_inputs_results_1 = changing_inputs_dr.execute(
["processed_data", "amount_per_country"],
inputs={"cutoff_date": "2024-09-11"}
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)

print()
print(changing_inputs_results_1["amount_per_country"].head())
print()

changing_inputs_dr.cache.view_run()

raw_data::result_store::get_result::hit
processed_data::adapter::execute_node
amount_per_country::adapter::execute_node

amound_in_usd
country
USA 729.9

)
©
C
—~+

(from cache)

raw_data

DataFrame processed_data amount_per_country

|m o DataFrame DataFrame
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Now, we execute with the cutoff_date value "2024-09-05", which forces processed_data to be
executed.

changing_inputs_results_2 = changing_inputs_dr.execute(
["processed_data", "amount_per_country"],
inputs={"cutoff_date": "2024-09-05"}
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print()
print(changing_inputs_results_2["amount_per_country"].head())
print()

changing_inputs_dr.cache.view_run()

raw_data::result_store::get_result::hit
processed_data::adapter::execute_node
amount_per_country::result_store::get_result::hit

amound_in_usd

country
Canada 968.491
USA 1719.240
Legend
P a
ilnput:
1

(from cache)

raw_data

Dataframe processed_data amount_per_country

DataFrame DataFrame

Notice that the cache could still retrieve amount_per_country . This is because processed_data
return a value that had been cached previously (in the Adding a node section).

In concrete terms, filtering rows by the date "2024-09-05" or "2024-09-01" includes the same
rows and produces the same dataframe.
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print(adding_node_results["processed_data"])

prin

t()

print(changing_inputs_results_2["processed_data"])
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cities

New York
0s Angeles
Chicago
Montréal
Vancouver

cities
New York

Los Angeles

Chicago
Montréal
Vancouver

Changing code

date
2024-09-13
2024-09-12
2024-09-11
2024-09-11
2024-09-09

date
2024-09-13
2024-09-12
2024-09-11
2024-09-11
2024-09-09

amount country currency

478.
251.
)
742 .
584.

amount

478.
251.
)
742,
584.

23
67
34
14
56

USA
USA
USA
Canada
Canada

country

USA
67 USA
34 USA
14 Canada
56 Canada

23

usbD
usbD
usb
CAD
CAD

currency
usb
usb
usb
CAD
CAD

amound_in_usd
478.2300
251.6700
989.3400
541.7622
426.7288

amound_in_usd
478.2300
251.6700
989.3400
541.7622
426.7288

As you develop your dataflow, you will need to edit upstream nodes. Caching will automatically
detect code changes and determine which node needs to be re-executed. In processed_data(),
we'll change the conversation rate from 0.73 to 0.71.

NOTE. changes to docstrings and comments # are ignored when versioning a node.

%%cell_to_module changing_code_module
import pandas as pd

DATA = {
"cities": ["New York", "Los Angeles", "Chicago", "Montréal",
"Vancouver"],
"date": ["2024-09-13", "2024-09-12", "2024-09-11", "2024-09-11",
"2024-09-09"1,
"amount": [478.23, 251.67, 989.34, 742.14, 584.56],
"country": ["USA", "USA", "USA", "Canada", "Canada"],
"currency": ["USD", "USD", "USD", "CAD", "CAD"],
}

def raw_data() -> pd.DataFrame:
"""Loading raw data. This simulates loading from a file,

database, or external service.

def processed_data(raw_data: pd.DataFrame, cutoff_date: str)

return pd.DataFrame(DATA)

pd.DataFrame:
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"""Filter out rows before cutoff date and convert currency to
USD. nmmnn

df = raw_data.loc[raw_data.date > cutoff_date].copy()

df["amound_in_usd"] = df["amount"]

df.loc[df.country == "Canada", "amound_in_usd"] *= 0.71 # <-
VALUE CHANGED FROM module_2
return df

def amount_per_country(processed_data: pd.DataFrame) -> pd.DataFrame:
"""Sum the amount in USD per country"""
return processed_data.groupby("country")
["amound_in_usd"].sum().to_frame()

We need to execute processed_data because the code change created a new cache_key and led
to a cache miss. Then, processed_data returns a previously unseen value, forcing
amount_per_country to also be re-executed

changing _code_dr_1 =
driver.Builder().with_modules(changing_code_module).with_cache().build()

changing_code_results_1 = changing_code_dr_1.execute(
["processed_data", "amount_per_country"],
inputs={"cutoff_date": "2024-09-01"}

)

print()

print(changing_code_results_1["amount_per_country"].head())

print()

changing_code_dr_1.cache.view_run()

raw_data::result_store::get_result::hit
processed_data::adapter::execute_node
amount_per_country::adapter::execute_node

amound_in_usd
country
Canada 941.957
USA 1719.240
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DataFrame processed_data amount_per_country

R DataFrame DataFrame

We make another code change to processed_data to accomodate currency conversion for Brazil
and Mexico.

%%cell_to_module changing_code_module_2
import pandas as pd

DATA = {

"cities": ["New York", "Los Angeles", "Chicago", "Montréal",
"Vancouver"],

"date": ["2024-09-13", "2024-09-12", "2024-09-11", "2024-09-11",
"2024-09-09"1,

"amount": [478.23, 251.67, 989.34, 742.14, 584.56],

"country": ["USA", "USA", "USA", "Canada", "Canada"],

"currency": ["USD", "USD", "USD", "CAD", "CAD"I,

}

def raw_data() -> pd.DataFrame:

"""lLoading raw data. This simulates loading from a file,
database, or external service."""

return pd.DataFrame(DATA)

def processed_data(raw_data: pd.DataFrame, cutoff_date: str) ->
pd.DataFrame:
"""Filter out rows before cutoff date and convert currency to
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usp."""

df = raw_data.loc[raw_data.date > cutoff_date].copy()

df["amound_in_usd"] = df["amount"]

df.loc[df.country == "Canada", "amound_in_usd"] *= 0.71

df.loc[df.country == "Brazil", "amound_in_usd"] *= 0.18 # <-
LINE ADDED

df.loc[df.country == "Mexico", "amound_in_usd"] %= 0.05 # <-
LINE ADDED

return df

def amount_per_country(processed_data: pd.DataFrame) -> pd.DataFrame:
"""Sum the amount in USD per country"""
return processed_data.groupby("country")
["amound_in_usd"].sum().to_frame()

Again, the code change forces processed_data to be executed.

changing_code_dr_2 =
driver.Builder().with_modules(changing_code_module_2).with_cache().build()

changing_code_results_2 =
changing_code_dr_2.execute(["processed_data", "amount_per_country"],
inputs={"cutoff_date": "2024-09-01"})

print()

print(changing_code_results_2["amount_per_country"].head())

print()

changing_code_dr_2.cache.view_run()

raw_data::result_store::get_result::hit
processed_data::adapter::execute_node
amount_per_country::result_store::get_result::hit

amound_in_usd
country
Canada 941.957
USA 1719.240
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(from cache)

DataFrame

raw_data

processed_data

DataFrame

amount_per_country

DataFrame

However, amount_per_country can be retrieved because processed_data returned a previously

seen value.

In concrete terms, adding code to process currency from Brazil and Mexico didn't change the
processed_data result because it only includes data from the USA and Canada.

NOTE. This is similar to what happened at the end of the section Changing inputs.

print(changing_code_results_1["processed_data"])
print()
print(changing_code_results_2["processed_data"])

S~ WNRER OO
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cities

New York
Los Angeles
Chicago
Montréal
Vancouver

cities
New York
Los Angeles

date
2024-09-13
2024-09-12
2024-09-11
2024-09-11
2024-09-09

date
2024-09-13
2024-09-12

amount
478.23
251.67
989.34
742 .14
584.56

amount
478.23
251.67

country currency

USA usD
USA usD
USA usD
Canada CAD
Canada CAD
country currency
USA usD
USA usD

amound_in_usd
478.2300
251.6700
989.3400
526.9194
415.0376

amound_in_usd
478.2300
251.6700



170 User Guide

2 Chicago 2024-09-11 989.34 USA usD 989.3400
3 Montréal 2024-09-11 742.14 Canada CAD 526.9194
4 Vancouver 2024-09-09 584.56 Canada CAD 415.0376

Changing external data

Hamilton’s caching mechanism uses the node's code_version and its dependencies
data_version to determine if the node needs to be executed or the result can be retrieved from
cache. By default, it assumes idempotency of operations.

This section covers how to handle node with external effects, such as reading or writing external
data.

Idempotency

To illustrate idempotency, let's use this minimal dataflow which has a single node that returns the
current date and time:

import datetime

def current _datetime() -> datetime.datetime:
return datetime.datetime.now()

The first execution will execute the node and store the resulting date and time. On the second
execution, the cache will read the stored result instead of re-executing. Why? Because the
code_version is the same and the dependencies data_version (it has no dependencies) haven't
changed.

A similar situation occurs when reading from external data, as shown here:

import pandas as pd

def dataset(file_path: str) -> pd.DataFrame:
return pd.read_csv(file_path)

Here, the code of dataset() and the value for file_path can stay the same, but the file itself
could be updated (e.g., new rows added).

The next sections show how to always re-execute a node and ensure the latest data is used. The
DATA constant is modified with transactions in Brazil and Mexico to simulate raw_data loading a
new dataset.


https://www.astronomer.io/docs/learn/dag-best-practices#review-idempotency
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%%cell_to_module changing_external_module
import pandas as pd

DATA = {
"cities": ["New York", "Los Angeles", "Chicago", "Montréal",
"Vancouver", "Houston", "Phoenix", "Mexico City", "Chihuahua City",

"Rio de Janeiro"],

"date": ["2024-09-13", "2024-09-12", "2024-09-11", "2024-09-11",
"2024-09-09", "2024-09-08", "2024-09-07", "2024-09-06", "2024-09-05",
"2024-09-04"],

"amount": [478.23, 251.67, 989.34, 742.14, 584.56, 321.85,
918.67, 135.22, 789.12, 432.78],

"country": ["USA", "USA", "USA", "Canada", "Canada", "USA",
"USA", "Mexico", "Mexico", "Brazil"l],

"currency": ["usD", "usD", "usb", "CAD", "CAD", "USD", "USD",
"MXN", "MXN", "BRL"],

}

def raw_data() -> pd.DataFrame:

"""lLoading raw data. This simulates loading from a file,
database, or external service."""

return pd.DataFrame(DATA)

def processed _data(raw_data: pd.DataFrame, cutoff_date: str) ->
pd.DataFrame:

"""Filter out rows before cutoff date and convert currency to
USD. nmmnn

df = raw_data.loc[raw_data.date > cutoff_date].copy()

df["amound_in_usd"] = df["amount"]

df.loc[df.country == "Canada", "amound_in_usd"] *= 0.71
df.loc[df.country == "Brazil", "amound_in_usd"] %= 0.18
df.loc[df.country == "Mexico", "amound_in_usd"] *= 0.05
return df

def amount_per_country(processed_data: pd.DataFrame) -> pd.DataFrame:
Sum the amount in USD per country"""

return processed_data.groupby("country")
["amound_in_usd"].sum().to_frame()

At execution, we see raw_data being retrieved along with all downstream nodes. Also, we note
that the printed results don't include Brazil nor Mexico.

changing_external_dr =
driver.Builder().with_modules(changing_external_module).with_cache().build()

changing_external_results =
changing_external_dr.execute(["amount_per_country"],
inputs={"cutoff_date": "2024-09-01"})

print()
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print(changing_external_results["amount_per_country"].head())
print()
changing_external_dr.cache.view_run()

raw_data::result_store::get_result::hit
processed_data::result_store::get_result::hit
amount_per_country::result_store::get_result::hit

amound_in_usd

country
Canada 941.957
USA 1719.240
Legend
P a0
ilnput:
I

(from cache)

raw_data

DataFrame processed_data amount_per_country

S DataFrame DataFrame

[
cutoff date str i
I

.with_cache() tO specify caching behavior
Here, we build a new Driver with the same changing_external_module, but we specify in
.with_cache() to always recompute raw_data .

The visualization shows that raw_data was executed, and because of the new data, all
downstream nodes also need to be executed. The results now include Brazil and Mexico.

changing_external_with_cache_dr =
driver.Builder().with_modules(changing_external_module).with_cache(recompute=["r
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changing_external_with_cache_results =
changing_external_with_cache_dr.execute(["amount_per_country"],
inputs={"cutoff_date": "2024-09-01"})

print()
print(changing_external_with_cache_results["amount_per_country"].head())
print()

changing_external_with_cache_dr.cache.view_run()

raw_data::adapter::execute_node
processed_data::adapter::execute_node
amount_per_country::adapter::execute_node

amound_in_usd

country
Brazil 77 .9004
Canada 941.9570
Mexico 46.2170
USA 2959.7600
Legend
o q
ilnput:
|

raw_data

Dataframe processed data amount_per_country

oo DataFrame DataFrame

acache tO specify caching behavior

Another way to specify the RECOMPUTE behavior is to use the @cache decorator.
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%%cell_to_module changing_external_decorator_module
import pandas as pd
from hamilton.function_modifiers import cache

DATA = {
"cities": ["New York", "Los Angeles", "Chicago", "Montréal",
"Vancouver", "Houston", "Phoenix", "Mexico City", "Chihuahua City",

"Rio de Janeiro"],

"date": ["2024-09-13", "2024-09-12", "2024-09-11", "2024-09-11",
"2024-09-09", "2024-09-08", "2024-09-07", "2024-09-06", "2024-09-05",
"2024-09-04"1,

"amount": [478.23, 251.67, 989.34, 742.14, 584.56, 321.85,
918.67, 135.22, 789.12, 432.78],

"country": ["USA", "USA", "USA", "Canada", "Canada", "USA",
"USA", "Mexico", "Mexico", "Brazil"],

"currency": ["usD", "usD", "usD", "CAD", "CAD", "USD", "usD",
"MXN", "MXN", "BRL"],

}

dcache(behavior="recompute")
def raw_data() -> pd.DataFrame:

"""lLoading raw data. This simulates loading from a file,
database, or external service."""

return pd.DataFrame(DATA)

def processed_data(raw_data: pd.DataFrame, cutoff_date: str) ->
pd.DataFrame:

"""Filter out rows before cutoff date and convert currency to
USD. nmmnn

df = raw_data.loc[raw_data.date > cutoff_date].copy()

df["amound_in_usd"] = df["amount"]

df.loc[df.country == "Canada", "amound_in_usd"] *= 0.71
df.loc[df.country == "Brazil", "amound_in_usd"] *= 0.18
df.loc[df.country == "Mexico", "amound_in_usd"] *= 0.05
return df

def amount_per_country(processed_data: pd.DataFrame) -> pd.DataFrame:
"""Sum the amount in USD per country"""
return processed_data.groupby("country")
["amound_in_usd"].sum().to_frame()

We build a new Driver with changing_external_cache_decorator_module, which includes the
@cache decorator. Note that we don’t specify anything in .with_cache() .

changing_external_decorator_dr = (
driver.Builder()
.with_modules(changing_external_decorator_module)
.with_cache()
.build()
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)

changing_external_decorator_results =
changing_external_decorator_dr.execute(

["amount_per_country"],

inputs={"cutoff_date": "2024-09-01"}
)
print()
print(changing_external_decorator_results["amount_per_country"].head())
print()
changing_external_decorator_dr.cache.view_run()

raw_data::adapter::execute_node
processed_data::result_store::get_result::hit
amount_per_country::result_store::get_result::hit

amound_in_usd

country

Brazil 77.9004
Canada 941.9570
Mexico 46.2170

USA 2959.7600
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(from cache)

raw_data

Dataframe processed_data amount_per_country

S DataFrame DataFrame

We see that raw_data was re-executed. Then, processed_data and amount_per_country can be
retrieved because they were produced just before by the changing_external_with_cache_dr

When to use acache VS. .with_cache() ?

Specifying the caching behavior via .with_cache() or acache is entirely equivalent. There are
benefits to either approach:

- @cache : specify behavior at the dataflow-level. The behavior is tied to the node and will be
picked up by all priver loading the module. This can prevent errors or unexpected behaviors
for users of that dataflow.

- .with_cache() : specify behavior at the briver -level. Gives the flexiblity to change the
behavior without modifying the dataflow code and committing changes. You might be ok with
DEFAULT during development, but want to ensure RECOMPUTE in production.

Importantly, the behavior specified in .with_cache(...) overrides whatever is in @cache
because it is closer to execution. For example, having .with_cache(default=["raw_data"])
acache(behavior="recompute") would force DEFAULT behavior.
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@ Important: Using the acache decorator alone doesn't enable caching; adding
.with_cache() to the Builder does. The decorator is only a mean to specify special
behaviors for a node.

Force recompute all

By specifying .with_cache(recompute=True), you are setting the behavior REcOMPUTE for all
nodes. This forces recomputation, which is useful for producing a “cache refresh” with up-to-date
values.

recompute_all_dr = (
driver.Builder()
.with_modules(changing_external_decorator_module)
.with_cache(recompute=True)
.build()

)

recompute_all_results = recompute_all_dr.execute(
["amount_per_country"],
inputs={"cutoff_date": "2024-09-01"}
)
print()
print(recompute_all_results["amount_per_country"].head())
print()
recompute_all_dr.cache.view_run()

raw_data::adapter::execute_node
processed_data::adapter::execute_node
amount_per_country::adapter::execute_node

amound_in_usd

country

Brazil 77 .9004
Canada 941.9570
Mexico 46.2170

USA 2959.7600
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)
©
C
—~+

raw_data

DEETEE processed_data amount_per_country

R DataFrame DataFrame

We see that all nodes were recomputed.

Setting default behavior

Once you enable caching using .with_cache(), it is a “opt-out” feature by default. This means all
nodes are cached unless you set the DISABLE behavior via  @cache or
.with_cache(disable=[...]). This can become difficult to manage as the number of nodes
increases.

You can make it an “opt-in” feature by setting default_behavior="disable" in .with_cache().
This way, you're using caching, but only for nodes explicitly specified in @cache or

.with_cache() .

Here, we build a bpriver with the changing external_decorator_module, where raw_data was
set to have behavior RECOMPUTE , and set the default behavior to DISABLE .

default_behavior _dr = (
driver.Builder()
.with_modules(changing_external_decorator_module)
.with_cache(default_behavior="disable")
.build()

)

default_behavior results default_behavior_dr.execute(

["amount_per_country"],
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inputs={"cutoff_date": "2024-09-01"}
)
print()
print(default_behavior_results["amount_per_country"].head())
print()
default_behavior_dr.cache.view_run()

raw_data::adapter::execute_node
processed_data::adapter::execute_node
amount_per_country::adapter::execute_node

amound_in_usd

country
Brazil 77 .9004
Canada 941.9570
Mexico 46.2170
USA 2959.7600
Legend
P a
ilnput:
|

raw_data

DEETETE processed_data amount_per_country

___________________ DataFrame DataFrame

default_behavior_dr.cache.behaviors[default_behavior_dr.cache.last_run_id]

{"amount_per_country': <CachingBehavior.DISABLE: 3>,
"processed_data': <CachingBehavior.DISABLE: 3>,
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'raw_data': <CachingBehavior.RECOMPUTE: 2>,
'cutoff_date': <CachingBehavior.DISABLE: 3>}

Materializers

NOTE. You can skip this section if you're not using materializers.

DatalLoader and DataSaver (collectively “materializers”) are special Hamilton nodes that connect
your dataflow to external data (files, databases, etc.). These constructs are safe to use with
caching and are complementary.

Caching
- writing and reading shorter-term data to be used with the dataflow
- strong connection between the code and the data
- automatically handle multiple versions of the same dataset

Materializers
- robust mechanism to read/write data from many sources

- data isn't necessarily meant to be used with Hamilton (e.g, loading from a warehouse,
outputting a report).

- typically outputs to a static destination; each write overwrites the previous stored dataset.

The next cell uses @dataloader and adatasaver decorators. In the visualization, we see the
added raw_data.loader and saved data nodes.

%%cell_to_module materializers_module -d
import pandas as pd
from hamilton.function_modifiers import dataloader, datasaver

DATA = {

"cities": ["New York", "Los Angeles", "Chicago", "Montréal",
"Vancouver", "Houston", "Phoenix", "Mexico City", "Chihuahua City",
"Rio de Janeiro"],

"date": ["2024-09-13", "2024-09-12", "2024-09-11", "2024-09-11",
"2024-09-09", "2024-09-08", "2024-09-07", "2024-09-06", "2024-09-05",
"2024-09-04"1,

"amount": [478.23, 251.67, 989.34, 742.14, 584.56, 321.85,
918.67, 135.22, 789.12, 432.78],

"country": ["USA", "USA", "USA", "Canada", "Canada", "USA",
"USA", "Mexico", "Mexico", "Brazil"],

"currency": ["USD", "USD", "USD", "CAD", "CAD", "USD", "USD",
"MXN", "MXN", "BRL"],
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}

@dataloader()
def raw_data() -> tuple[pd.DataFrame, dict]:
"""lLoading raw data. This simulates loading from a file,
database, or external service."""
data = pd.DataFrame(DATA)
metadata = {"source": "notebook", "format": "json"}
return data, metadata

def processed_data(raw_data: pd.DataFrame, cutoff_date: str) ->
pd.DataFrame:

"""Filter out rows before cutoff date and convert currency to
USD‘ nmmnn

df = raw_data.loc[raw_data.date > cutoff_date].copy()

df["amound_in_usd"] = df["amount"]

df.loc[df.country == "Canada", "amound_in_usd"] *= 0.71
df.loc[df.country == "Brazil", "amound_in_usd"] *= 0.18
df.loc[df.country == "Mexico", "amound_in_usd"] *= 0.05
return df

def amount_per_country(processed_data: pd.DataFrame) -> pd.DataFrame:
"""Sum the amount in USD per country"""
return processed_data.groupby("country")
["amound_in_usd"].sum().to_frame()

adatasaver()

def saved_data(amount_per_country: pd.DataFrame) -> dict:
amount_per_country.to_parquet("./saved_data.parquet")
metadata = {"source": "notebook", "format": "parquet"}
return metadata

_________

function
S—
materializer

raw_data.loader

raw_data

DataFrame

T EEED processed_data amount_per_country saved_data
—————————————————— DataFrame DataFrame saved _data()

____________________

Next, we build a briver as usual.
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materializers_dr = (
driver.Builder()
.with_modules(materializers _module)
.with_cache()
.build()

)

materializers results = materializers _dr.execute(
["amount_per_country", "saved_data"],
inputs={"cutoff_date": "2024-09-01"}

)

print()

print(materializers_results["amount_per_country"].head())

print()

materializers_dr.cache.view_run()

raw_data.loader: :adapter::execute_node
raw_data::adapter::execute_node
processed_data::result_store::get_result::hit
amount_per_country::result_store::get_result::hit
saved_data::adapter::execute_node

amound_in_usd

country

Brazil 77 .9004
Canada 941.9570
Mexico 46.2170

USA 2959.7600
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—————————

materializer

from cache

raw_data.loader

raw_data

DelsnEnE processed_data amount_per_country saved_data
___________________ DataFrame DataFrame saved_data()

1
1
I cutoff_date str |
1 1

raw_data()

____________________

We execute the dataflow a second time to show that loaders and savers are just like any other
node; they can be cached and retrieved.

materializers results = materializers_dr.execute(
["amount_per_country", "saved_data"],
inputs={"cutoff_date": "2024-09-01"}

)

print()

print(materializers_results["amount_per_country"].head())

print()

materializers dr.cache.view_run()

raw_data.loader::result_store::get_result::hit
raw_data::result_store::get_result::hit
processed_data::result_store::get_result::hit
amount_per_country::result_store::get_result::hit
saved_data::result_store::get_result::hit

amound_in_usd

country

Brazil 77 .9004
Canada 941.9570
Mexico 46.2170

USA 2959.7600
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DataFrame

raw_data.loader raw_data
raw_data() DataFrame processed_data I I amount_per_country saved_data

DataFrame saved _data()

1
1
I cutoff_date str |
1 1

____________________

Usage patterns

Here are a few common scenarios:

Loading data is expensive: Your dataflow uses a DatalLoader to get data from Snowflake. You
want to load it once and cache it. When executing your dataflow, you want to use your cached
copy to save query time, egress costs, etc.

- Use the DEFAULT caching behavior for loaders.

Only save new data: You run the dataflow multiple times (maybe with different parameters or on a
schedule) and only want to write to destination when the data changes.

- Use the DEFAULT caching behavior for savers.

Always read the latest data: You want to use caching, but also ensure the dataflow always uses
the latest data. This involves executing the DatalLoader every time, get the data in-memory,
version it, and then determine what needs to be executed (see Changing external data).

- Use the RECOMPUTE caching behavior for loaders.

Use the parameters default_loader_behavior Or default_saver_behavior of the .with_cache()
clause to specify the behavior for all loaders or savers.

NOTE. The Caching + materializers tutorial notebook details how to achieve granular
control over loader and saver behaviors.

materializers dr_ 2 = (
driver.Builder()
.with_modules(materializers_module)
.with_cache(
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default_loader_behavior="recompute",
default_saver_behavior="disable"
)
.build()
)

materializers results 2 = materializers dr_2.execute(
["amount_per_country", "saved_data"],
inputs={"cutoff_date": "2024-09-01"}

N/

print()
print(materializers_results_2["amount_per_country"].head())
print()

materializers_dr_2.cache.view_run()

raw_data.loader: :adapter::execute_node
raw_data::adapter::execute_node
processed_data::result_store::get_result::hit
amount_per_country::result_store::get_result::hit
saved_data::adapter::execute_node

amound_in_usd

country
Brazil 77 .9004
Canada 941.9570
Mexico 46.2170
USA 2959.7600
Legend
| input |

materializer

from cache

raw_data.loader

raw_data

Dataframe processed_data amount_per_country saved_data
___________________ DataFrame DataFrame saved_data()

1
1
I cutoff_date str |
1 1

raw_data()

____________________
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materializers dr_2.cache.behaviors[materializers dr_ 2.cache.last_run_id]

{"amount_per_country': <CachingBehavior.DEFAULT: 1>,
"processed_data': <CachingBehavior.DEFAULT: 1>,
'raw_data.loader': <CachingBehavior.RECOMPUTE: 2>,
'raw_data': <CachingBehavior.RECOMPUTE: 2>,
'saved_data': <CachingBehavior.DISABLE: 3>,
"cutoff_date': <CachingBehavior.DEFAULT: 1>}

Changing the cache format

By default, results are stored in pickle format. It's a convenient default but comes with caveats.
You can use the @cache decorator to specify another file format for storing results.

By default this includes:
* json

* parquet

© csv

+ excel

- file

+ feather

* orc

This feature uses DatalLoader and DataSaver under the hood and supports all of the same
formats (including your custom ones, as long as they take a path attribute).

This is an area of active development. Feel free to share suggestions and feedback!

The next cell sets processed_data to be cached using the parquet format.

%%cell_to_module cache_format_module
import pandas as pd
from hamilton.function_modifiers import cache

DATA = {

"cities": ["New York", "Los Angeles", "Chicago", "Montréal",
"Vancouver", "Houston", "Phoenix", "Mexico City", "Chihuahua City"
"Rio de Janeiro"],

"date": ["2024-09-13", "2024-09-12", "2024-09-11", "2024-09-11",

?


https://grantjenks.com/docs/diskcache/tutorial.html#caveats
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"2024-09-09", "2024-09-08", "2024-09-07", "2024-09-06", "2024-09-05",
"2024-09-04"],

"amount": [478.23, 251.67, 989.34, 742.14, 584.56, 321.85,
918.67, 135.22, 789.12, 432.78],

"country": ["USA", "USA", "USA", "Canada", "Canada", "USA",
"USA", "Mexico", "Mexico", "Brazil"l],

"currency": ["usD", "usD", "usb", "CAD", "CAD", "USD", "USD",
"MXN", "MXN", "BRL"],

}

def raw_data() -> pd.DataFrame:

"""lLoading raw data. This simulates loading from a file,
database, or external service."""

return pd.DataFrame(DATA)

dcache(format="parquet")
def processed_data(raw_data: pd.DataFrame, cutoff_date: str) ->
pd.DataFrame:
"""Filter out rows before cutoff date and convert currency to
usp."""
df = raw_data.loc[raw_data.date > cutoff_date].copy()
df["amound_in_usd"] = df["amount"]

df.loc[df.country == "Canada", "amound_in_usd"] *= 0.71
df.loc[df.country == "Brazil", "amound_in_usd"] %= 0.18
df.loc[df.country == "Mexico", "amound_in_usd"] *= 0.05
return df

def amount_per_country(processed_data: pd.DataFrame) -> pd.Series:
Sum the amount in USD per country"""
return processed_data.groupby("country")["amound_in_usd"].sum()

When executing the dataflow, we see raw_data recomputed because it's a dataloader. The result
for processed_data will be retrieved, but it will be saved again as .parquet this time.

cache_format _dr =
driver.Builder().with_modules(cache format _module).with_cache().build()

cache_format_results =
cache_format_dr.execute(["amount_per_country"],
inputs={"cutoff_date": "2024-09-01"})

print()
print(cache_format_results["amount_per_country"].head())
print()

cache_format_dr.cache.view_run()

raw_data::result_store::get_result::hit
processed_data::adapter::execute_node
amount_per_country::adapter::execute_node
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country
Canada 941.957
USA 1719.240

Name: amound_in_usd, dtype: float64

4 N
from cache
\_ y

( N
raw_data

gD ataframe y processed_data amount_per_country

mmmmmmmmmmmmmm e DataFrame Series

Now, under the ./.hamilton_cache, there will be two results of the same name, one with the
.parquet extension and one without. The one without is actually a pickeld DatalLoader to
retrieve the .parquet file.

You can access the path programmatically via the result_store._path_from_data_version(...)
method.

data_version =

cache_format_dr.cache.data_versions[cache_format _dr.cache.last_run_id]
["processed_data"]

parquet_path =
cache_format_dr.cache.result_store._path_from_data_version(data_version).with_su
parquet_path.exists()

True
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Introspecting the cache

The Driver.cache stores information about all executions over its lifetime. Previous run_id are
available through bDriver.cache.run_ids and can be used in tandem without other utility
functions:

- Resolve the node caching behavior (e.g., “recompute”)
- Access structured logs
- Visualize the cache execution

Also, Driver.cache.last_run_id is a shortcut to the most recent execution.

cache_format_dr.cache.resolve_behaviors(cache_format_dr.cache.last_run_id)

{"amount_per_country': <CachingBehavior.DEFAULT: 1>,
"processed_data': <CachingBehavior.DEFAULT: 1>,
'raw_data': <CachingBehavior.DEFAULT: 1>,
"cutoff_date': <CachingBehavior.DEFAULT: 1>}

run_logs =
cache_format_dr.cache.logs(cache_format_dr.cache.last_run_id,
level="debug")
for event in run_logs["processed_data"]:

print(event)

processed_data::adapter::resolve_behavior
processed_data::adapter::set_cache_key
processed_data::adapter::get_cache_key::hit
processed_data::adapter::get_data_version::miss
processed_data::metadata_store::get_data_version::miss
processed_data::adapter::execute_node
processed_data::adapter::set_data_version
processed_data::metadata_store::set_data_version
processed_data::adapter::get_cache_key::hit
processed_data::adapter::get_data_version::hit
processed_data::result_store::set_result
processed_data::adapter::get_data_version::hit
processed_data::adapter::resolve_behavior
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# for ~.view_run()  passing no parameter is equivalent to the last
“run_id’
cache_format_dr.cache.view_run(cache_format_dr.cache.last_run_id)

>
©
C
~

(from cache)

raw_data

DataFrame processed_data amount_per_country

R DataFrame Series

Interactively explore runs

By using ipywidgets we can easily build a widget to iterate over run_id values and display
cache information. Below, we create a Driver and execute it a few times to generate data then
inspect it with a widget.

interactive_dr =
driver.Builder().with_modules(cache_format_module).with_cache().build()

interactive_dr.execute(["amount_per_country"],
inputs={"cutoff_date": "2024-09-01"})
interactive_dr.execute(["amount_per_country"],
inputs={"cutoff_date": "2024-09-05"})
interactive_dr.execute(["amount_per_country"],
inputs={"cutoff_date": "2024-09-10"})
interactive_dr.execute(["amount_per_country"],
inputs={"cutoff_date": "2024-09-11"})
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interactive_dr.execute(["amount_per_country"],
inputs={"cutoff_date": "2024-09-13"})

raw_data::result_store::get_result::hit
processed_data::result_store::get_result::hit
amount_per_country::result_store::get_result::hit
raw_data::result_store::get_result::hit
processed_data::adapter::execute_node
amount_per_country::result_store::get_result::hit
raw_data::result_store::get_result::hit
processed_data::adapter::execute_node
amount_per_country::adapter::execute_node
raw_data::result_store::get_result::hit
processed_data::adapter::execute_node
amount_per_country::adapter::execute_node
raw_data::result_store::get_result::hit
processed_data::adapter::execute_node
amount_per_country::adapter::execute_node

{"amount_per_country': Series([], Name: amound_in_usd, dtype:
float64)}

The following cell allows you to click-and-drag or use arrow-keys to navigate

from IPython.display import display
from ipywidgets import SelectionSlider, interact

dinteract(run_id=SelectionSlider(options=interactive_dr.cache.run_ids))

def iterate_over_runs(run_id):
display(interactive_dr.cache.data_versions[run_id])
display(interactive_dr.cache.view_run(run_id=run_id))

Managing storage

Setting the cache patn

By default, metadata and results are stored under ./.hamilton_cache, relative to the current
directory at execution time. You can also manually set the directory via .with_cache(path=...) to
isolate or centralize cache storage between dataflows or projects.

Running the next cell will create the directory ./my_other_cache .
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manual_path_dr =
driver.Builder().with_modules(cache_format_module).with_cache(path="./

my_other_cache").build()

Instantiating the result_store and metadata_store

If you need to store metadata and results in separate locations, you can do so by instantiating the
result_store and metadata_store manually with their own configuration. In this case, setting
.with_cache(path=...) would be ignored.

from hamilton.caching.stores.file import FileResultStore
from hamilton.caching.stores.sqlite import SQLiteMetadataStore

result_store = FileResultStore(path="./results")
metadata_store = SQLiteMetadataStore(path="./metadata")

manual_stores dr = (
driver.Builder()
.with_modules(cache_format_module)
.with_cache(
result _store=result_store,
metadata_store=metadata_store,

)
.build()

Deleting data and recovering storage

As you use caching, you might be generating a lot of data that you don't need anymore. One
straightforward solution is to delete the entire directory where metadata and results are stored.

You can also programmatically call .delete_all() on the result_store and metadata_store,
which should reclaim most storage. If you delete results, make sure to also delete metadata. The
caching mechanism should figure it out, but it's safer to keep them in sync.

manual_stores_dr.cache.metadata_store.delete_all()
manual_stores dr.cache.result_store.delete_all()



193 User Guide

Usage patterns

As demonstrated here, caching works great in a notebook environment.

- In addition to iteration speed, caching allows you to restart your kernel or shutdown your
computer for the day without worry. When you’ll come back, you will still be able to retrieve
results from cache.

- A similar benefit is the ability resume execution between environments. For example, you might
be running Hamilton in a script, but when a bug happens you can reload these values in a
notebook and investigate.

- Caching works great with other adapters like the HamiltonTracker that powers the Hamilton Ul
and the MLFlowTracker for experiment tracking.

w7 INTERNALS

If you're curious the following sections provide details about the caching internals. These APIs are
not public and may change without notice.

Manually retrieve results

Using the Driver.cache you can directly retrieve results from previous executions. The cache
stores “data versions” which are keys for the result_store.

Here, we get the run_id for the 4th execution (index 3) and the data version for processed_data
before retrieving its value.

run_id = interactive_dr.cache.run_ids[3]

data_version = interactive _dr.cache.data_versions[run_id]
["processed_data"]

result = interactive_dr.cache.result_store.get(data_version)
print(result)

cities date amount country currency amound_in_usd
0 New York 2024-09-13 478.23 USA usD 478.23
1 Los Angeles 2024-09-12 251.67 USA UsD 251.67

Decoding the cache_key

By now, you should have a better grasp on how Hamilton’s caching determines when to execute a
node. Internally, it creates a cache_key from the code_version of the node and the
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data_version of each dependency. The cache keys are stored on the Driver.cache and can be
decoded for introspection and debugging

Here, we get the run_id for the 3rd execution (index 2) and the cache key for
amount_per_country . We then use decode_key() to retrieve the node_name, code_version, and

dependencies_data_versions.

from hamilton.caching.cache_key import decode_key

run_id = interactive_dr.cache.run_ids[2]

cache_key = interactive_dr.cache.cache_keys[run_id]
["amount_per_country"]

decode_key(cache_key)

{'node_name': 'amount_per_country",
‘code_version':
'c2ccafab4280fbc969870b6baas45211277d7e8cfa98a0821836¢c175603ffda2’,
"dependencies_data_versions': {'processed_data': 'WgV5-4SfdKTfUY66X-
msj_xXsKNPNTP2guRhfw=="}}

Indeed, this match the data version for processed_data for the 3rd execution.

interactive_dr.cache.data_versions[run_id]["processed_data"]

"WgV5-4STdKTfUY66x-msj_xXsKNPNTP2guRhfw=="

Manually retrieve metadata

In addition to the result_store, there is a metadata_store that contains mapping between
cache_key and data_version (cache keys are unique, but many can point to the same data).

Using the knowledge from the previous section, we can use the cache key for
amount_per_country to retrieve its data_version and result. It's also possible to decode its
cache_key, and get the data_version for its dependencies, making the node execution
reproducible.

run_id = interactive_dr.cache.run_ids[2]

cache_key = interactive_dr.cache.cache_keys[run_id]
["amount_per_country"]

amount_data_version =
interactive_dr.cache.metadata_store.get(cache_key)
amount_result =
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interactive_dr.cache.result_store.get(amount_data_version)
print(amount_result)

country
Canada 526.9194
USA 1719.2400

Name: amound_in_usd, dtype: float64

for dep_name, dependency_data_version in decode_key(cache_key)
["dependencies_data_versions"].items():

dep_result =
interactive_dr.cache.result_store.get(dependency_data_version)

print(dep_name)

print(dep_result)

print()

processed_data

cities date amount country currency amound_in_usd
0 New York 2024-09-13 478.23 USA usbD 478.23
1 Los Angeles 2024-09-12 251.67 USA usD 251.67
2 Chicago 2024-09-11 989.34 USA usbD 989.34
3 Montréal 2024-09-11 742.14 Canada CAD 526.9194

Feature engineering

Apache Hamilton's roots are in time-series offline feature engineering. But it can be used for any
type of feature engineering: offline, streaming, online. All our examples are oriented towards
Pandas, but rest assured, you can use Apache Hamilton with any python objects, e.g. numpy,
polars, and even pyspark.

Here's a 20 minute video (slides), with brief backstory on Apache Hamilton, and an overview (at
around the 8:52 mark) of how to use it for feature engineering which was presented at the Feature
Store Summit 2022:

Otherwise here we present a high level overview and then direct users to the examples folder for
more details. We suggest reading the Offline Feature Engineering section first, since it's the most
common use case, and helps explain the python module structure you should be going for with
Apache Hamilton. If you need more guidance here, please reach out to us on slack.


https://github.com/skrawcz/talks/files/9759661/FS.Summit.2022.-.ApacheHamilton.pdf
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
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Offline Feature Engineering

To use Apache Hamilton for offline feature engineering, a common pattern is:

1

. create a data_loader module(s) that loads the data from the source(s) (e.g. a database, a csv

file, etc.).

. create feature transform module(s) that transform the data into features.

. create a data set module(s) that combines the data_loader and feature transform modules if

you want to connect fitting a model with Apache Hamilton. Or, you do this data set definition in
your driver code.

Here is a sketch of the above pattern:

# data_loader.py
dextract_columns(*...) # you can choose to expose individual columns
def load_data(...) -> pd.DataFrame:

return pd.read_csv(...)

# feature_transform.py
def feature_a(raw_input_a: pd.Series, ...) -> pd.Series:
return raw_input_a +

# dataset.py (optional)
def model_set_x(feature_a: pd.Series, ...) -> pd.DataFrame:
return pd.DataFrame({'feature_a': feature_a, ...})
# run.py
def main():
dr = driver.Driver(config, data_loader, feature_transform,
dataset)
feature_df = dr.execute([feature_transform.feature_ a, ...])

Apache Hamilton Example

We do not provide a specific example here, since most of the examples in the examples folder fall
under this category. Some examples to browse:

- Hello World shows the basics of how to use Apache Hamilton.

- Data Quality shows how to incorporate runtime data quality checks into your feature

engineering pipeline.

- Time-series Kaggle Example shows one way to structure your code to ingest, create features,

and fit a model.


https://github.com/apache/hamilton/tree/main/examples/hello_world
https://github.com/apache/hamilton/tree/main/examples/data_quality
https://github.com/apache/hamilton/tree/main/examples/model_examples/time-series
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- Feature engineering in multiple contexts helps show how you can use Apache Hamilton in
multiple contexts reusing code where possible, e.g. offline, & online.

- PySpark UDF Map Examples shows how to use Apache Hamilton to encode map operations for
use with PySpark.

Streaming Feature Engineering

Right now, there is no specific streaming support. Instead, we model the problem as we would for
offline. Apache Hamilton has an inputs= argument to the execute() function in the driver. This
allows you to then instantiate a Apache Hamilton Driver once, and then call execute() multiple
times with different inputs. Otherwise you'd have a similar python module structure as for offline
feature engineering — perhaps just dropping the data_loader module since you would provide the
inputs directly to the execute() function.

Here's a sketch of how you might use Apache Hamilton in conjunction with a Kafka Client:

# run.py
def main():
kakfa client = KafkaClient(...)
dr = driver.Driver(config, feature_transform)
for batch in kafka_client.get_batches(): # this is pseudo code,
but you get the idea
feature _df = dr.execute([feature_transform.feature a, ...],
inputs=batch.to_dict())
# do something / emit back to kafka, etc.

Caveats to think about. Here are some things to think about when using Apache Hamilton for
streaming feature engineering:

- aggregation features, you likely want to understand whether you want to aggregate
over the entire stream or just the current batch, or load values that were computed
offline.

Apache Hamilton Example

Currently we don’t have a streaming example. But we are working on it. We direct users to look at
the online example for now, since conceptually from a modularity stand point, things would be set
up in a similar way.


https://github.com/apache/hamilton/tree/main/examples/feature_engineering/feature_engineering_multiple_contexts
https://github.com/apache/hamilton/tree/main/examples/spark/pyspark_udfs
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Online Feature Engineering

Online feature engineering can be quite simple or quite complex, depending on your situation.
However, good news is, that Apache Hamilton should be able to help you in any situation. The
modularity of Apache Hamilton allows you to swap out implementations of features easily, as well
as override values, and even ask the Driver what features are required from the source data to
create the features that you want. We think Apache Hamilton can help you keep things simple, but
then extend to helping you handle more complex situations.

The basic structure of your python modules, does not change. Depending on whether you want
Apache Hamilton to load data from a feature store, or you have all the data passed in, you just
need to appropriately segment your feature transforms into modules, or use the @config*
decorator, to help you segment your feature computation dataflow to give you the flexibility you
need.

Caveats to think about. Here are some things to think about when using Apache Hamilton for
online feature engineering:

- aggregation features, most likely you'll want to load aggregated feature values that
were computed offline, rather than compute them live.

We skip showing a sketch of structure here, and invite you to look at the examples below.

Apache Hamilton Example

We direct users to look at Feature engineering in multiple contexts that currently describes two
scenarios around how you could incorporate Apache Hamilton into an online web-service, and
have it aligned with your batch offline processes. Note, these examples should give you the high
level first principles view of how to do things. Since having something running in production , we
didn’t want to get too specific.

Write once, run anywhere blog post:

For a comprehensive post on writing a feature once and using it anywhere see this blog. The
companion example code can be found here.

Best Egg Platform Blog Post:

For an overview of how Best Egg built their feature platform on Apache Hamilton see this blog.


https://github.com/apache/hamilton/tree/main/examples/feature_engineering/feature_engineering_multiple_contexts
https://blog.dagworks.io/p/feature-engineering-with-hamilton
https://github.com/apache/hamilton/tree/main/examples/feature_engineering/write_once_run_everywhere_blog_post
https://blog.dagworks.io/p/building-a-better-feature-platform?r=2cg5z1&utm_campaign=post&utm_medium=web
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FAQ

Q. Can | use Apache Hamilton for feature engineering with Feast?

Yes, you can use Apache Hamilton with Feast. See our [Feast example](https://github.com/
apache/hamilton/tree/main/examples/feast) and  accompanying [blog  post](https://
blog.dagworks.io/p/featurization-integrating-hamilton). Typically people use Apache Hamilton on
the offline side to compute features that then get pushed to Feast. For the online side it varies as
to how to integrate the two.

Model training

As Apache Hamilton is a generic library for representing dataflows in pandas, it can be used for a
wide array of tasks. One of the more common applications is using hamilton for training, testing,
and executing machine learning models, all the way from feature-engineering through training
and inference.

The following two examples show how to use Apache Hamilton to model an entire ML pipeline:
1. A classification pipeline for the iris dataset using scikit-learn

2. An implementation of the m5 kaggle competition to do time-series forecasting on unit sales for
using Walmart data.

The goal of these is to get you comfortable with building out ML pipelines using hamilton,
potentially giving you inspiration/templates from which you can get started.

LLM workflows

Apache Hamilton is great for describing dataflows, and a lot of “actions” you want an “agent” to
perform can be described as one, e.g. create an embedding of some passed in text, query a vector
database, find the nearest documents, etc.

The benefit of using Apache Hamilton within an LLM Powered app is that:
1. you can visualize the dataflow.

2.you can easily test, modify, compose, and reuse dataflows. For example, you can easily test the
dataflow that creates an embedding of some text without having to worry about the rest of the
dataflow.


https://github.com/apache/hamilton/tree/main/examples/feast
https://github.com/apache/hamilton/tree/main/examples/feast
https://blog.dagworks.io/p/featurization-integrating-hamilton
https://blog.dagworks.io/p/featurization-integrating-hamilton
https://github.com/apache/hamilton/tree/main/examples/model_examples/scikit-learn
https://github.com/apache/hamilton/tree/main/examples/model_examples/time-series
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3.you can easily swap out the implementation details of components surgically. For example, you
can swap out the vector database client based on configuration, this helps in ensuring you can
quickly and easily modify/update your dataflow and have confidence around the impact of that
change.

4.you can use functionality like runtime data quality checks/extend Apache Hamilton's
capabilities with your own needs to inject/augment your dataflow with additional functionality,
e.g. caching, logging, etc.

5.you can request the intermediate outputs of a dataflow by requesting it as output without any
surgery required to any of your code to do so. This is useful for debugging.

The following examples show how to use Apache Hamilton for LLM workflows:
- How to use “OpenAl functions” with a Knowledge Base
- Modular LLM Stack with blog post

- PDF Summarizer which shows a partial RAG workflow (just missing going to a vector store to get
the PDF/content) that runs inside FastAPI with a Streamlit frontend.

Data quality

Apache Hamilton comes with data quality included out of the box. While you can read more about
this in the API reference, we have a few examples to help get you started.

The following two examples showcase a similar workflow, one using the vanilla hamilton data
quality decorator, and the other using the pandera integration. The goal of this is to show how to
use runtime data quality checks in a larger, more complex ETL.

1. Data quality with hamilton

2. Data quality with pandera


https://github.com/apache/hamilton/tree/main/examples/LLM_Workflows/knowledge_retrieval/
https://github.com/apache/hamilton/tree/main/examples/LLM_Workflows/modular_llm_stack
https://blog.dagworks.io/p/building-a-maintainable-and-modular
https://github.com/apache/hamilton/tree/main/examples/LLM_Workflows/pdf_summarizer
https://github.com/apache/hamilton/tree/main/examples/data_quality/simple
https://github.com/apache/hamilton/tree/main/examples/data_quality/pandera
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Lineage + Apache Hamilton

Lax sex_encoder

LabelEncoder

titanic_data

!
, index_col str '
| location str !

'

DataFrame

__________

training_set_v1
DataFrame

X_train
DataFrame
prefit_random_forest

ClassifierMixin

Example lineage graph generated by Apache Hamilton when you write Apache Hamilton code.
Here we showcase Apache Hamilton's lineage abilities. We will use the Titanic data set to model a
hypothetical company set up where there is data engineering and data science team collaborating
together.

train_test_split_func
[l dict
! i s mmmm e
' I 5

I
| validation_size_fraction float 1
random_state int :

fit_random_forest
ClassifierMixin

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

i
: max_depth typing.Union 1
| random_state int

If you want to see code and what it does we invite you to jump straight into browsing the
lineage_snippets notebook. For those coming from the lineage blog post, you can find the code
shown in lineage_script.py.

For those who want to continue, let's first talk about some common problems people encounter,
then more formally frame what we mean by lineage, and then explain how Apache Hamilton's
lineage capabilities help you solve common problems encountered with Data and Machine
Learning.

Note: a quick word on terminology, we use function and node interchangeably because you
write functions, that get turned into nodes that are modeled in a DAG. So if you see function or
node they mean the same thing effectively.


https://github.com/apache/hamilton/blob/main/examples/lineage/lineage_snippets.ipynb
https://github.com/apache/hamilton/blob/main/examples/lineage/lineage_script.py
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Common Problems (and therefore questions)

As your data and ML work progresses, invariably time passes and someone runs into a problem
such as:

- why is my model suddenly behaving badly? What columns does it use and what are its data
sources?

- we used to be getting a value for this column/feature, but now we're not. What has changed?
- we ingested some bad data, and we need to know who and what is impacted.

-a person on my team wants to make a change to X, but I'm afraid we're going to break
something.

- | have inherited some code running in production, and now something broke, where do | start?

- Governance is asking me for information about data sources to a model, and the work required
seems arduous, how can | quickly get this information?

- I'm terrified of inheriting this code base, | don’t know what's going on.
- | need to audit that we're in compliance with GDPR, but that's going to take forever.

These are all questions that can be answered with lineage information. Let’s talk about what we
mean by lineage more concretely.

What is “Lineage”?

In the context of machine learning and data work, “lineage” refers to the historical record or
traceability of data, models, and processes. It encompasses the entire life cycle of data, from its
origin to its final usage. Lineage helps establish the provenance, quality, and reliability of data and
aids in understanding how the data has been transformed.

In the context of machine learning models, lineage provides information about the training data,
preprocessing steps, hyperparameters, and algorithms used to train the model. It helps
researchers, data scientists, and stakeholders understand how a model was developed and
evaluate its reliability and potential biases.

For data pipelines and workflows, lineage tracks the flow of data through different processing
steps, transformations, and analyses. It helps identify dependencies, troubleshoot issues, and
reproduce results by capturing the sequence of operations performed on the data.
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Lineage information is valuable for various reasons, including:

- Reproducibility: Lineage enables the replication of experiments and analyses by recording the
exact steps taken, ensuring that results can be reproduced reliably.

- Auditing and Compliance: Lineage provides transparency and accountability, which is crucial for
regulatory compliance and ensuring data privacy.

- Troubleshooting and Debugging: Lineage helps identify errors, inconsistencies, or unexpected
results by tracing data transformations and model training processes.

- Collaboration: Lineage allows different stakeholders to understand the data’s history, facilitating
collaboration between teams working on different parts of a project.

Apache Hamilton’s Lineage Capabilities

Good news: Apache Hamilton provides a lot of the functionality needed for storing lineage and
asking questions of it. Here we'll walk through a few features of Apache Hamilton that will help
answer and empower teams targeting the four points above:

- reproducibility
- auditing and compliance
- troubleshooting and debugging

- collaboration

Lineage as Code

To start, Apache Hamilton by design, encodes lineage information as code. This means, as you
write each Apache Hamilton function, you are encoding lineage information required to compute
it, i.e. by specifying a dataflow you have in effect, specified lineage! This means, as you write your
code and commit to, for example a version control system, you have a record of how computation
should happen. A huge benefit of this, is when the code changes, so does this information - all
without you having to manage a separate system!

TL;DR:
No need for a separate system to store lineage information, it's already in your code!

The one thing you need to manage is that Apache Hamilton does not store information on
artifacts it produces. If you're producing a dataframe, a model, or some other object that your
Apache Hamilton code computes, you need to store that. The good news is, you're likely already
doing this! But, you're probably not storing the lineage information that produced that artifact,
and that's where Apache Hamilton comes in.
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For each artifact you produce, you just need to associate the Apache Hamilton DAG that produced
it. This is as simple as storing the git SHA of the code and snapshot of configuration that created
your Apache Hamilton DAG, so you can retrieve the code and ask questions of it. Adding this extra
information is easy since most destinations to store artifacts allow for extra metadata to be
stored, e.g. from MLFlow for models, Snowflake as table metadata for tables/dataframes, to flat
files on S3.

Let's explain how using Apache Hamilton helps get at the four points above.

Reproducibility

By writing Apache Hamilton code and connecting it with a version control system (e.g. git) you
have by definition written code that can reproduce results. This is because Apache Hamilton DAGs
are deterministic. The version control system is a straightforward way to store evolutions of your
code and configuration, and therefore your DAGs.

By versioning code, you are therefore versioning lineage information. This means you can go back
in time and ask questions about the past. For example, you can ask what the lineage information
was for a model that was trained at a specific point in time. This is as simple as checking out the
git SHA of the code that produced the model, and asking Apache Hamilton to visualize (e.g. see
visualize_execution() ), the DAG and ask questions of it.

Auditing and Compliance

The atag and (atag_outputs ) feature allows you to annotate your functions with metadata. No
extra YAML file to manage, just directly together with your Apache Hamilton code. This means you
can tag functions with information such as “Pll”, “GDPR”, “HIPAA” etc. and then ask Apache
Hamilton to return nodes with certain tags, e.g. get me all my “sources”, or “what is PIl, and what
consumes it?”, etc.

The Apache Hamilton Driver has a lot of functions that allow you to ask questions of your DAGs to
make (1) easier. The driver code can be run in a CI/CD system, or as part of a reporting/auditing
pipeline. For example, you can ask:

- What are all the functions and their tags via list_available_variables()

-What are the possible places that consume the output of this function via

what_is_downstream_of()
- What are the possible sources that feed into this function via what_is_upstream_of()

With these three functions you can the find functions with specific tags and then ask questions in
relation to them.


https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.visualize_execution
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.visualize_execution
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.visualize_execution
https://hamilton.apache.org/reference/decorators/tag
https://hamilton.apache.org/reference/decorators/tag
https://hamilton.apache.org/reference/decorators/tag
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.list_available_variables
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.list_available_variables
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.list_available_variables
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.what_is_downstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.what_is_downstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.what_is_downstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.what_is_upstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.what_is_upstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.what_is_upstream_of
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Troubleshooting and Debugging

The good news is that what is great for reproducibility, auditing and reproducibility, is also great
for troubleshooting and debugging.

Debugging is methodical and procedural with Apache Hamilton. The way functions are written and
executed mean that one can easily walk through just the part of the DAG of interest to debug an
issue. To help with this, Apache Hamilton has various methods to visualize lineage so you can
more easily see what you're walking through connects to:

+ display_all_functions()
+ display_downstream_of()
+ display_upstream_of()
- visualize_execution()

+ visualize_path_between()

Collaboration

When any organization scales, or has personnel changes, it's important to have a system that
helps people get up to in a self-service manner. Apache Hamilton's lineage as code approach
means that new team members can easily get up to speed because functions are written in a
standard way, and the lineage information is encoded in the code itself. The Apache Hamilton
Driver code enables one to ask questions of the DAGs, and therefore the code, to get up to speed
quickly.

Recipe for using Apache Hamilton’s Lineage Capabilities

At a high level, the recipe for utilizing Apache Hamilton's lineage capabilities is as follows:
1. Write Apache Hamilton code.
2. Use @tag and @tag_outputs to annotate functions.

3. Instantiate a Apache Hamilton Driver, it'll then have a representation of how data and compute
flow as defined by your Apache Hamilton code. The Driver object can then emit/provide
information on lineage!

4. 1f you store Apache Hamilton code with your version control system, you can then go back in
time to understand how lineage changes over time, since it's encoded in code!

In code this should look something like the following:

(1) and (2) write Apache Hamilton code and annotate with @tag (and/or @atag_outputs ).


https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.display_all_functions
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.display_all_functions
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.display_all_functions
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.display_downstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.display_downstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.display_downstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.display_upstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.display_upstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.display_upstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.visualize_execution
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.visualize_execution
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.visualize_execution
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.visualize_path_between
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.visualize_path_between
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.visualize_path_between
https://hamilton.apache.org/reference/decorators/tag
https://hamilton.apache.org/reference/decorators/tag
https://hamilton.apache.org/reference/decorators/tag
https://hamilton.apache.org/reference/decorators/tag
https://hamilton.apache.org/reference/decorators/tag
https://hamilton.apache.org/reference/decorators/tag
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atag(owner="data-science", importance="production", artifact="model")
def fit_random_forest(
prefit_random_forest: base.ClassifierMixin,
X_train: pd.DataFrame,
y_train: pd.Series,
) -> base.ClassifierMixin:
"""Returns a fit RF model."""
# ... contents of function not important ... code skipped for
brevity

(3) Instantiate a Apache Hamilton Driver and ask questions of it.

from hamilton import base

from hamilton import driver

import data_loading, features, model_pipeline, sets # import modules
config = {} # This example has no configuration.

# instantiate the driver

adapter = base.DefaultAdapter()

dr = driver.Driver(config, data_loading, features, sets,
model_pipeline, adapter=adapter)

# ask questions of the driver

# E.g. How do the feature encoders get computed and what flows into
them?

inputs = {
"location": "data/train.csv",
"index_col": "passengerid",
"target_col": "survived",

"random_state": 42,

"max_depth": None,

"validation_size_ fraction": 0.33,
}
dr.visualize_execution(

[features.encoders], "encoder_lineage", {"format": "png"},
inputs=inputs
)
# what is upstream of the fit_random_forest node?
upstream_nodes = dr.what_is_upstream_of("fit_random_forest")
# can now filter the nodes by tags, and pull that information out...

# what is downstream of the titanic_data node?
downstream_nodes = dr.what_is_downstream_of("titanic_data")
# can now filter the nodes by tags, and pull that information out...

# what nodes are PII?
pii_nodes = [n for n in dr.list_available_variables()
if n.tags.get("PII") == "true"]

# what nodes are called between "age" and "fit_random_forest"?
nodes_in_path = dr.what_is_the_path_between("age",
"fit_random_forest")
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# etc

To see more code, we invite you to:
1. Browse the modules to see what the functions are and what they're annotated with.

2. Browse either the lineage_snippets notebook or the lineage_script to see how to use the
Apache Hamilton Driver to ask questions of your DAGs.

3. We invite you to then go back in time, by checking out this repository and checking out an older
commit and re-running the script or notebook and seeing how things change. The command to
“go back in time” would be:

# see current lineage

python lineage_script.py

# go back in time

git checkout 7e2e92a79644b904856c0a81b8faa7flaed0cbie
# see past lineage

python lineage_script.py

# to reset to current lineage

git checkout main

A script you could write to ask questions of your DAGs

To help you get programmatic access to your DAGs, we have an example script you could write to
quickly get lineage answers. The script is lineage_commands.py. The main point of the script, is to
show you that it could encode a runbook for your team, or be used within your CI/CD system to
query, visualize, and otherwise emit lineage information.

Scaling computation

Apache Hamilton enables a variety of tools for allowing you to scale your data processing by
integrating with third-party libraries.

Specifically, we have four examples that show how to scale Apache Hamilton both by parallelizing
transformations (ray and dask) and running on larger, distributed datasets (pandas on spark,
pyspark map UDFs).

1. Integrating hamilton with pandas on spark.

2. Integrating hamilton with ray.


https://github.com/apache/hamilton/blob/main/examples/lineage/lineage_snippets.ipynb
https://github.com/apache/hamilton/blob/main/examples/lineage/lineage_script.py
https://github.com/apache/hamilton/blob/main/examples/lineage/lineage_commands.py
https://github.com/apache/hamilton/tree/main/examples/spark/pandas_on_spark
https://github.com/apache/hamilton/tree/main/examples/ray
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3. Integrating hamilton with dask.

4. Integrating hamilton with pyspark.

Microservice

While we've mainly been discussing running Apache Hamilton in a batch environment, it can easily
be used in a microservice/online setting. This is valuable if you want insight into exactly how your
endpoints transform/load data, or if you want to execute the same transforms you did in batch in
an online setting.

The following example shows how to execute an asynchronous set of transforms in a microservice:
We will be releasing feature-specific examples shortly, as well.

https://github.com/apache/hamilton/tree/main/examples/async

Extension autoloading

Under  hamilton.plugins, there are many modules named  +_extensions (eg,
hamilton.plugins.pandas_extensions, hamilton.plugins.mlflow_extensions ). They implement
Apache Hamilton features for 3rd party libraries, including @extract_columns, materializers
( to.parquet, from_.mlflow ), and more.

Autoloading behavior

By default, Apache Hamilton attempts to load all extensions one-by-one. This means that as you
have more Python packages in your environment (e.g, pandas, pyspark, mlflow, xgboost ),
importing Apache Hamilton appears to become slower because it actually imports many packages.

This behavior can be less desirable when your Apache Hamilton dataflow doesn’t use any of these
packages, but you need them in your Python environment nonetheless. For example, if only
pandas is needed for your dataflow, but you have mlflow and xgboost in your environment
their respective extensions will be loaded each time.

Disable autoloading

Disabling extension autoloading allows to import Apache Hamilton without any extensions, which
can reduce import time from 2-3 sec to less than 0.5 sec. This speedup is welcomed when you


https://github.com/apache/hamilton/tree/main/examples/dask
https://github.com/apache/hamilton/tree/main/examples/spark/pyspark
https://github.com/apache/hamilton/tree/main/examples/async
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need to restart a notebook’s kernel often or you're operating in a low RAM environment (some
Python packages are larger than 50Mbs).

There are three ways to opt-out: programmatically, environment variables, configuration file. You
must opt-out before having any other hamilton import.

1. Programmatically

from hamilton import registry
registry.disable_autoload()

2. Environment variables
From the console

export HAMILTON_AUTOLOAD_EXTENSIONS=0
Programmatically via Python os.environ .

import os
os.environ["HAMILTON_ AUTOLOAD_EXTENSIONS"] = "0"

Programmatically in Jupyter notebooks
%env HAMILTON_AUTOLOAD_EXTENSIONS=0

3. Configuration file

Using the following command disables autoloading via the configuration file ./hamilton.conf .
Apache Hamilton won't autoload extensions anymore (i.e., you won't need to use approach 1 or 2
each time).

hamilton-disable-autoload-extensions
To revert this configuration use the following command

hamilton-enable-autoload-extensions
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To reenable autoloading in specific files, you can delete the environment variable or use
registry.enable_autoload() before calling registry.initialize()

from hamilton import registry
registry.enable_autoload()
registry.initialize()

Manually loading extensions

If you disabled autoloading, extensions need to be loaded manually. You should load them before
having any other hamilton import to avoid hard-to-track bugs. There are two ways.

1. Importing the extension

from hamilton.plugins import pandas_extensions, mlflow_extensions

2. Registering the extension
This approach has good IDE support via typing.Literal

from hamilton import registry
registry.load_extensions("mlflow")

Wrapping the Driver

The APIs that the Hamilton Driver is built on, are considered internal. So it is possible for you to
define your own driver in place of the stock Hamilton Driver, we suggest the following path if you
don't like how the current Apache Hamilton Driver interface is designed:

Write a “Wrapper” class that delegates to the Hamilton Driver.

ie.

from hamilton import driver

class MyCustomDriver(object):
def __init__(self, constructor_arg, ...):
self.constructor_arg = constructor_arg
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# some internal functions specific to your context
H ...

def my_execute_function(self, argl, arg2, ...):
"""What actually calls the Hamilton"""
dr = driver.Driver(self.constructor_arg, ...)
df = dr.execute(self.outputs)
return self.augmetn(df)

That way, you can create the right API constructs to invoke Hamilton in your context, and then
delegate to the stock Hamilton Driver. By doing so, it will ensure that your code continues to work,
since we intend to honor the Hamilton Driver APIs with backwards compatibility as much as

possible.

Command line interface

This page covers the Apache Hamilton CLI. It is built directly from the CLI, but note that the

command hamilton --help always provide the most accurate documentation.

Installation

The dependencies for the Apache Hamilton CLI can be installed via
pip install sf-hamilton[cli]
You can verify the installation with

hamilton --help

hamilton (gl.o bal)

Options:
- --verbose / --no-verbose : [default: no-verbose]
- --json-out / --no-json-out : [default: no-json-out]

- --install-completion : Install completion for the current shell.
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- --show-completion: Show completion for the current shell, to copy it or customize the

installation.
- --help : Show this message and exit.
Commands:
- build: Build a single Driver with MODULES

- diff : Diff between the current MODULES and their...

+ version : Version NODES and DATAFLOW from dataflow...

+ view: Build and visualize dataflow with MODULES

hamilton build

Build a single Driver with MODULES

Usage:

$ hamilton build [OPTIONS] MODULES...

Arguments:
- MODULES. .. : [required]
Options:

- --help: Show this message and exit.

hamilton diff

Diff between the current MODULES and their specified GIT_REFERENCE

Usage:

$ hamilton diff [OPTIONS] MODULES...

Arguments:

* MODULES. .. : [required]
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Options:
- --git-reference TEXT: [default: HEAD]
+ --view / --no-view: [default: no-view]
- --output-file-path PATH:[default: diff.png]

- --help : Show this message and exit.

hamilton version

Version NODES and DATAFLOW from dataflow with MODULES

Usage:

$ hamilton version [OPTIONS] MODULES...

Arguments:
* MODULES. .. : [required]
Options:

- --help : Show this message and exit.

hamilton view

Build and visualize dataflow with MODULES

Usage:

$ hamilton view [OPTIONS] MODULES...

Arguments:

* MODULES. .. : [required]

Options:

- --output-file-path PATH:[default:./dag.png]

- --help : Show this message and exit.
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pre-commit hooks

Use pre-commit hooks for safer Apache Hamilton code changes

This page gives an introduction to pre-commit hooks and how to use custom hooks to validate
your Apache Hamilton code.

What are pre-commit hooks?

A pre-commit hook is a script or command that's executed automatically before making a commit.
The goal of these hooks is to standardize code formatting and catch erroneous code before being
committed. For example, popular hooks include ensuring files have no syntax errors, sorting
imports, and normalizing line breaks.

Note that it's different from testing, which focuses on the behavior of the code. You can think of
pre-commit hooks as checks and formatting you would do everytime you save a file.

Add pre-commit hooks to your project

Hooks are a mechanism of the git version control system. You can find your project’s hooks
under the .git/hooks directory (it might be hidden by default). There should be many files with
the .sample extension that serve as example scripts.

The preferred way of working with pre-commit hooks is through the prek library. This library
allows you to import and configure hooks for your repository with a .pre-commit-config.yaml
file.

Steps to get started

1. install the prek library
pip install prek
2.add a .pre-commit-config.yaml to your repository

# .pre-commit-config.yaml
repos:
# repository with hook definitions
- repo: https://github.com/pre-commit/pre-commit-hooks


https://github.com/j178/prek/
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rev: v6.0.0 # release version of the repo
hooks: # list of hooks from the repo to include in this project
- id: end-of-file-fixer
- 1id: trailing-whitespace
- id: check-yaml
args: ['--unsafe'] # some accept arguments
# download another repository with hooks
- repo: https://github.com/psf/black
rev: 22.10.0

hooks:
- id: black

3. install the hooks defined in .pre-commit-config.yaml
prek install

Now, hooks will automatically run on git commit

4.to manually run hooks

prek run --all-files

Custom Apache Hamilton pre-commit hooks

pre-commit hooks are great developer tools, but off-the-shelf solutions aren’'t aware of the
Apache Hamilton framework. Hence, we developed a pre-commit hook to help you author Apache
Hamilton dataflows! Under the hood, they leverage the hamilton CLI, so if you are unfamiliar with
it, feel free to install it and view the --help messages.

pip install sf-hamilton[cli]
hamilton --help

Checking dataflow definition

Apache Hamilton doesn’t have many syntactic constraints, but there’'s a few things we want to
catch:

- functions parameters and return are type annotated
- a node consistently has the same type (e.g,, a parameter in multiple functions)

- functions with a name starting with underscore ( _) are ignored from the dataflow
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- functions with a @config decorator received a trailing double underscore with a suffix (e.g,
hello__weekday(), hello__weekend() )

Instead of reimplementing this logic, we can try to build the Hamilton Driver with the command
hamilton build MODULES and catch errors. This also ensures the verification is always in sync with
the actual build mechanism. This hook will help prevent us from committing invalid dataflow
definitions.

Checking dataflow paths

A dataflow definition might be valid, but it might break paths in unexpected ways. The command
hamilton validate (which internally uses briver.validate_execution() ) can check if a node is
reachable.

For example, take a look at my_module.py, which contains the nodes A, B, C, and the changes
between vi1 and v2.

# my_module.py - vl
def A() -> int:

def B(A: int) -> float:
def C(A: int, B: float) -> None:
# driver code

dr = driver.Builder().with_modules(my_module).build()
dr.validate_execution(final_vars=["C"]) # <- success

# my_module.py - v2
def B(X: int) -> float:

def C(A: int, B: float) -> None:
# driver code

dr = driver.Builder().with_modules(my_module).build()
dr.validate_execution(final_vars=["C"]) # <- failure. missing "A°
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C
————— NoneType

[ P -

In vi1, the dataflow could be validated for ¢ without any inputs. Now, a developer made B
depend on x instead of A and removed A. This change accidentally impacted ¢ which now
depends on the external input A. Note that both vi and v2 have a valid dataflow definition. To
catch breaking changes to the path to ¢, we could use hamilton validate --context
context.json my_module.py with the context:

// context.json
{ "HAMILTON_FINAL_VARS": ["C"] }
// will call .validate_execution(final_vars["C"])

pre-commit hooks can prevent commits from breaking a core path, but you should use unit

and integration tests for more robust checks.

Add Apache Hamilton pre-commit to your project

We alluded to the relationship between pre-commit hooks and the hamilton command line tool.
In fact, the basic hook is designed to take a list of hamilton commands and will execute them in

order when hooks are triggered.
To use them, add this snippet to your .pre-commit-config.yaml and adapt it to your project:
- repo: https://github.com/dagworks/hamilton-pre-commit

rev: v0.1.2 # use a ref >= 0.1.2
hooks:
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- id: cli-command
name: Apache Hamilton CLI command
args: [ # list of CLI commands to execute
hamilton build my_module.py,
hamilton build my_module2.py,
hamilton validate --context context.json my_module.py
my_module2.py,

]

The above snippet would:
- check the dataflow definition of my_module.py
- check the dataflow definition of my_module2.py

- validate the execution path specified in context.json for dataflow composed of my_module.py
and my_module2.py

You can pass any hamilton CLI command to the pre-commit hook, but it will only care about it
succeeding or failing.
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Apache Hamilton Ul

Reference

Ul Overview

Apache Hamilton comes with a fully open-source Ul that can be run both for local deployment
and on a remote server. The Ul consists of the following features:

1. Telemetry for hamilton executions — both on the history of executions and the data itself.
2. A feature/artifact catalog for browsing/connecting executions of nodes -> results.
3. A dataflow (i.e. DAG) visualizer for exploring and looking at your code, and determining lineage.

4. A project explorer for viewing curating projects and viewing versions of your Apache Hamilton
dataflows.

In short, the Apache Hamilton Ul aims to combine a large swath of MLOps/data observability
systems in one simple application.

ML Project A DAG View
v.27

(O SRS  svm_model . i [ k!
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petal_width_cm pandas. core. series. Series success 00.01 [ @ view]
a petal_width_cm_mean float 00.00 m
petal_width_cm_std float [ success | 00.00 [ a view]
petal_width_cm_normalized pandas. core. series. Series 00.00 =
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The Apache Hamilton Ul has two modes: 1. Run locally using sqlite3 2. Run on docker images with
postgres (meant for deployment)

Local Mode

To run the hamilton Ul in local mode, you can do the following:

pip install "sf-hamilton[ui,sdk]"
hamilton uil
# python -m hamilton.cli.__main__ ul # on windows

This will launch a browser window in localhost:8241. You can then navigate to the Ul and start
using it! While this can potentially handle a small production workflow, you may want to run on
postgres with a separate frontend/backend/db for full scalability and a multi-read/write db.

Docker/Deployed Mode

The Apache Hamilton Ul can be contained within a set of Docker images. You launch with docker-
compose, and it will start up the Ul, the backend server, and a Postgres database. If you'd like a
quick overview of some of the features, you can watch the following:

Note: if you run into the “Invalid HTTP_HOST” error, then please set the environment variable
HAMILTON_ALLOWED_HOSTS="*" (or comma separated list of domains of choice) for the backend
docker container. You can inject this via -e or in the docker-compose[-prod]yml file itself.

Install

If you'd like a video walkthrough on getting set up, you can watch the following:

As prerequisites, you will need to have Docker installed — you can follow instructions here.

1. Clone the Apache Hamilton repository locally
git clone https://github.com/apache/hamilton

1. Navigate to the hamilton/ui directory


https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/engine/install/
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cd hamilton/ui
1. Execute the installation script with the following command
./run.sh

This will:
- Pull all Docker images from the Docker Hub
- Start a local Postgres database
- Start the backend server
- Start the frontend server
This takes a bit of time! So be patient. The server will be running on port 8242.

1. Then navigate to http://localhost:8242 in your browser, and enter your email (this will be the
username used within the app).

Building the Docker Images locally

If building the Docker containers from scratch, increase your Docker memory to 10gb or more -
you can do this in the Docker Desktop settings.

To build the images locally, you can run the following command:

# from the hamilton/ui directory
./dev.sh --build

This will build the containers from scratch. If you just want to mount the local code, you can run
just

./dev.sh

Self-Hosting

If you know docker, you should be good to go. The one environment variable to know is
HAMILTON_ALLOWED_HOSTS, which you can set to * to allow all hosts, or a comma separated list
of hosts you want to allow.
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To host the Ul on a subpath, set REACT_APP_HAMILTON_SUB_PATH to the subpath required. For
example, to run on https://domain.com/hamilton:

- REACT_APP_HAMILTON_SUB_PATH=/hamilton

Make sure that the sub path environment variable begins with / if set.

Please reach out to us if you want to deploy on your own infrastructure and need help - join slack.
More extensive self-hosting documentation is in the works, e.g. Snowflake, Databricks, AWS, GCP,
Azure, etc.; we'd love a helm chart contribution!

Running on Snowflake

You can run the Apache Hamilton Ul on Snowflake Container Services. For a detailed guide, see
the blog post Observability of Python code and application logic with Apache Hamilton Ul on
Snowflake Container Services by Greg Kantyka and the Apache Hamilton Snowflake Example.

Get started

Now that you have your server running, you can run a simple dataflow and watch it in the Ul! You
can follow instructions in the Ul when you create a new project, or follow the instructions here.

First, install the SDK:
pip install "sf-hamilton[sdk]"

Then, navigate to the project page (dashboard/projects), in the running Ul, and click the green +
New DAG button.


https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
https://medium.com/@pkantyka/observability-of-python-code-and-application-logic-with-hamilton-ui-on-snowflake-container-services-a26693b46635
https://medium.com/@pkantyka/observability-of-python-code-and-application-logic-with-hamilton-ui-on-snowflake-container-services-a26693b46635
https://medium.com/@pkantyka
https://github.com/apache/hamilton/tree/main/examples/snowflake/hamilton_ui

Apache Hamilton Ul

Create a new project
Track execution of DAGs, visualize your pipelines, and understand how they change
over time!

Project Name

Demo project

Project Description

Project for hamilton Ul

Read Access

Enter emails or select teams you are a part of.

’ Eelect.“

Write Access

Enter emails or select teams you are a part of.

elijah@dagworks.io x

Remember the project ID - you'll use it for the next steps.

Existing Apache Hamilton Code

Add the following adapter to your code if you have existing Apache Hamilton code:

from hamilton_sdk import adapters

tracker = adapters.HamiltonTracker(
project_id=PROJECT_ID_FROM_ABOVE,
username="USERNAME/EMAIL_YOU_ PUT_IN_THE UI",
dag_name="my_version_of_the_dag",
tags={"environment": "DEV", "team": "MY_TEAM", "version": "X"}

)

dr = (
driver.Builder()
.with_config(your_config)
.with_modules(*your_modules)
.with_adapters(tracker)
.build()

Then run your DAG, and follow the links in the logs! Note that the link is correct if you're using the
local mode - if you're on postgres it links to 8241 (but you'll want to follow it to 8241).
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| need some Apache Hamilton code to run

If you don’t have Apache Hamilton code to run this with, you can run Apache Hamilton Ul example
under examples/hamilton_ui:

# we assume you're in the Apache Hamilton repository root

cd examples/hamilton_ui

# make sure you have the right python packages installed

pip install -r requirements.txt

# run the pipeline providing the email and project_id you created in
the UI

python run.py --email <email> --project_id <project_id>

You should see links in the logs to the Ul, where you can see the DAG run + the data summaries
captured.

Features

Once you get to the Ul, you can navigate to the projects page (left hand nav-bar). Assuming you
have created a project and logged to it, you can then navigate to view it and then more details
about it. E.g. versions, code, lineage, catalog, execution runs. See below for a few screenshots of
the Ul.

Dataflow versioning

Select a dataflow versions to compare and visualize.

ML Model Training

. Select tags to view... CITPPATEL Feedback!
@10 Versions
] catalog
Name... Code Hash DAG Hash Created Repository
@structure
@ ©Runs 180 @  machine_learning_dag ade97cfd-0. e245fedl-e. DAGWorks-Inc/dagworks-examples X Archive
LyC)
A 172 & machine_learning_dag 2f273bdf-b. ed6a21fc-6. DAGWorks-Inc/dagworks-examples X Archive
200
[j_,) 171 G machine_learning_dag 549862c2-0. 7029€602-0. DAGWorks-Inc/dagworks-examples
170 @ machine_learning_dag 56442€0b-1. 54c2daga—c DAGWorks-Inc/dagworks-examples
169 @  machine_learning_dag d756707-7. b10a89a2-7 DAGWorks-Inc/dagworks-examples
168 @ machine_learning_dag eeef55ec-8, ca673efd-6 DAGWorks-Inc/dagworks-examples X Archive

elijah@dagworks.io
dagworks

< ®


https://github.com/apache/hamilton/tree/main/examples/hamilton_ui
http://localhost:8242/dashboard/projects
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Assets/features catalog

View functions, nodes, and assets across a history of runs.

Search for nodes, functions, etc.

07 catalog Code Description Tags

@ Structure
{3 EEELN best_model f best_model Returns the best model based on the testing .  module components.models

©Runs
=] data_set
B QEEILY data_set vt  data_set.vl Explicitly define the feature set we want to..  module components.feature_transforms
B | LECTUN data_set_v2 fx data_set.v2 Explicitly define the feature set we want to.. module components.feature_transforms
o (ERE0LD fit_cif i fitclf Calls fit on the classifier object; it mutat.  module components.model_fitting
# gamma
LN transform NUENCEISY fx iris_data module components.iris_loader
B BREELLN iris_df x iris_df module components.iris_loader
I8N transform NLEUCEE] i Ir_model module components.models
(13 penalty
2 SN petal_length_cm i iris_df module components.iris_loader

z petal_length_cm_
| LECTUN petal_length_cm_log fx petal_length_cm_log Log value of petal_length_cm. module components.feature_transforms
# QEELEEN petal_length_cm_mean f mean_value Mean of petal_length_cm. module components.feature_transforms

Browser

View dataflow structure and code.



Apache Hamilton Ul

ML Model Training A > project > MLModel Training > version > machine_learning_dag > code
v.180
feature._ sepal_length_cm_log 0Oy
@[ Versions ~ [ ML Model Training ) )
« B components.feature_transforms def sepal_length_cn_log(sepal_length_cn: pd.Series) > pd.Series:
00 catalog s b data_set vl Log value of sepal_length_cm.
lata_set.v’ return np.log(sepal_length_cm)
> fx data_setv2
© Structure > fx mean_value [T = sepal_length_cm
B Code > f normalized_value PIEI - sepal_length_cm_log
> fx petal_length_cm_log
Y Visualize > fx petal_width_cm_log
> fx sepal_length_cm_log feature_ epal_width_cm_log 0OIY¥
©Runs > f sepal_width_cm_log
L_width_cm_log(sepal_width_cm: pd.Series) -> pd.Series:
> fx std_value
- og value of sepal_width_cm.
v [ components.iris_loader return np. log(sepal_width_cm)
> fx iris_data
> fx iris_df [Ty ~ sepal_w m |
v A components.model_fitting PPN - ccoalwidthcm_log
> fx fit_clf
fx prefit_clf__logreg
# prefit_clf_svm components.feature_transforms.std_value 0¥
> fx testing_accurac
PHing 'y @parameterize_sources (xk{f"{col}_std": {"col": col} for col in RAW_FEATURES})
> & train_test_split_func def std_value(col: pd.Series) —> float:
> fx training_accuracy """Standard deviation of {col}."""
v @ components.models return col.std()
> fx best_model
> # Ir_model UM~ sepaltength_cm | = width_cm | etal_length_cm | - th_cm
> fx svm_model P + sepal_length_cm_std | # sepal_width_cm_std | # petal_length_cm_std | # petal_width_cm_std
components.model_fitting.fit_cif 0Oz ¥
def fit_clf(
prefit_clf: base.ClassifierMixin, X_train: pd.DataFrame, y_train: pd.Series
) -> base.ClassifierMixin:
"nCalls fit on the classifier object; it mutates it."""
prefit_clf.fit(X_train, y_train)
return prefit_clf
input [N | B Xtrain | < y_train
Y - fit_cif
ML Model Training A > project > MLModelTraining > version > machine_learning_.dag > visualize
> v.180
033 eun versions
Q Catalog
® @ Structure
B Code
o 2 o
Y Visualize
200 - - N
Q) ©Runs y
[} e - XTI -~ gympem=
=
, CEmpm
= = ‘
. |
| — e ) e
D O D < gy S/
(c -]
Node grouping
group collapse by module +
group collapse by namespace (subdag) -
group collapse by defining function 8

D D e

Run tracking + telemetry

View a history of runs, telemetry on runs/comparison, and data for specific runs:
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ML Model Training

v.180 Select tags to view... 2023-06-11 ~ 2023-06-20 Filter by status...

@10 Versions

Runs Per Day Run Duration (s)

[ catalog 1.48
35 128
@ Structure 20 ' e
08
B cCode - 25 ‘ .

: \

|

|

\

8 1
- 20 04s
Visualize Runs Succ Failed p 02s
2 .
e 0s
Runs 1.0
Jn18  Jun14 Jun15  Jun16  Jun17  Jun18  Jun19
2 History 08
— o
© Alerts Jun 12 Jun 13 Jun 14 Jun 15 Jun 16 Jun 17 Jun 18 Jun 19
Top DAG Names Successes Failures Mean Duration
machine_learning_dag 7 1 0.584s
DAG Version Status Duration Ran Run by
@ (machine_learning_dag) success | 01.35 10 months ago stefan@dagworks.io
@ (machine_learning_dag) cess | 01.23 10 months ago stefan@dagworks.io
@ (machine_learning_dag) success | 01.27 10 months ago stefan@dagworks.io
@ (machine._learning_dag) cess | 0016 10 months ago stefan@dagworks.io
(machine_learing_dag) 00.20 10 months ago stefan@dagworks.io
593 7 (machine_learning_dag) 00.10 10 months ago stefan@dagworks.io
(machine_learning_dag) 00.21 10 months ago stefan@dagworks.io
ML Model Training
v. 180
v Runinfo Auto refresh
@10 Versions
~ Waterfall
[J catalog
@ Structure
B Code
Visualize
©Runs
A  History
© Alerts
0s 02s 04s 06s ogs 1s 128 1.ds 025 0s 02s 045 06s 08s 1s 125 145
Runs Node Type Properties State Duration
iris_data sklearn.utils._bunch.Bunch 0.007 £ 0.001s
iris_df pandas.core. frame.DataFrame 0.066 + 0.010s
sepal_length_cm pandas.core.series.Series EEEY o015 00018
sepal_length_cm_mean float [ su 0.001 £ 0.001s
sepal_length_cm_std float | success| 0.000 * 0.000s

sepal_length_cm_normalized pandas.core.series.Series | success| 0.021% 0.003s




ML Model Training
> v.180

038 oud Versions

Q [1] catalog
® ©sStructure
Code

) w
p ¥ Visualize

000
@ oruns

B’ # History
© Alerts

<
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SDK Configuration

This section documents HamiltonTracker configuration options.

Changing where data is sent
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Apache Hamilton Ul

You can change where telemetry is logged by passing in hamilton_api_url and/or hamilton_ui_url
to the HamiltonTracker constructor. By default, these are set to localhost:8241/8242.

from hamilton_sdk import adapters

tracker

adapters.HamiltonTracker(

project_id=PROJECT_ID_FROM_ABOVE,
username="USERNAME/EMAIL_YOU_PUT_IN_THE_UI",
dag_name="my_version_of_the_dag",
tags={"environment": "DEV", "team": "MY_TEAM", "version": "X"},
hamilton_api_url="http://YOUR_DOMAIN_HERE:8241",
hamilton_ui_url="http://YOUR_DOMAIN_HERE:8242" # if using docker
the UI is on 8242.

)

dr = (

driver.Builder()
.with_config(your_config)
.with_modules(*your_modules)

.with_adapters(tracker)
.build()
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Changing behavior of what is captured
By default, a lot is captured and sent to the Apache Hamilton UL

Here are a few options that can change that - these can be found in
hamilton_sdRk.tracking.constants. You can either change the defaults by directly changing the
constants, by specifying them in a config file, or via environment variables.

Here we first explain the options:

Simple Invocation

Option Default Explanation

CAPTURE_DATA_STATISTICS True Whether to capture any data insights/
statistics

MAX_LIST_LENGTH_CAPTURE 50 Max length for list capture

MAX_DICT_LENGTH_CAPTURE 100 Max length for dict capture

DEFAULT_CONFIG_URI ~[.hamilton.conf  Default config file URI.

To change the defaults via a config file, you can do the following:

[ SDK_CONSTANTS]
MAX_LIST_LENGTH_CAPTURE=100
MAX_DICT_LENGTH_CAPTURE=200

# save this to ~/.hamilton.conf

To change the defaults via environment variables, you can do the following, prefixing them with
HAMILTON_:

export HAMILTON_MAX_LIST_LENGTH_CAPTURE=100
export HAMILTON_MAX_DICT_LENGTH_CAPTURE=200
python run_my_hamilton_code.py

To change the defaults directly, you can do the following:
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from hamilton_sdk.tracking import constants

constants.MAX_LIST_LENGTH_CAPTURE
constants.MAX_DICT_LENGTH_CAPTURE

100
200

tracker = adapters.HamiltonTracker(
project_id=PROJECT_ID_FROM_ABOVE,
username="USERNAME/EMAIL_YOU_PUT_IN_THE_UI",
dag_name="my_version_of_the_dag",

tags={"environment": "DEV", "team": "MY_TEAM", "version":

)

dr = (
driver.Builder()
.with_config(your_config)
.with_modules(*your_modules)
.with_adapters(tracker)
.build()
)

dr.execute(...)

In terms of precedence, the order is:
1. Module default.

2. Config file values.

3. Environment variables.

4. Directly set values.

llxll}
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IDE extension

Reference

Apache Hamilton VSCode

The Apache Hamilton VSCode extension is an experimental feature under active development.
Edge cases, evolving features, and partial documentation are to be expected. Please open a
GitHub issue or reach out on Slack for troubleshooting!

The Apache Hamilton VSCode extension enables interactive dataflow development in VSCode. This
developer productivity tool helps your editor understand how Apache Hamilton works (code
completion, symbol navigation, etc.). It is powered by the Apache Hamilton Language Server and
can be installed directly from the VSCode marketplace.

Features

Dataflow visualization
Visualize the dataflow defined in the current Python file. As you type and add functions, the
visualization automatically updates. There is a Ul button to rotate the visualization 90-degree.


https://marketplace.visualstudio.com/items?itemName=DAGWorks.hamilton-vsc

IDE extension

business_logic.py - hamilton [WSL: Ubuntu-20.04] - Visual Studio Code
business_logicpy X analysis.py

def spend_per_signup(spend: pd.Series, signups: pd.Series) — pd.Series:

wun mun

return spend / signups

spend_mean(spend: pd.Series) — float:

wun mun

return spend.mean()

spend_zero_mean(spend: pd.Series, spend_mean: float) — pd.Series:

wun nun

return spend - spend_mean

spend_std_dev(spend: pd.Series) — float:

wun wun

return spend.std()

spend_zero_mean_unit_variance(spend_zero_mean: pd.Series, spend_std_dev: float) — pd.Series:

won mon

return spend_zero_mean / spend_std_dev

TERMINAL OUTPUT RUN AND DEBUG PYTHON HAMILTON

. X spend Series K )
spend Series spend Series K X function
signups Series }

spend_mean avg_3wk_spend spend_per_signup
spend Series spend Series
float Series Series

spend_zero_mean spend_std_dev

Series

spend_zero_mean_unit_variance

Series

We suggest moving the visualization tab to the VSCode panel (cTRL+1) or the secondary

sidebar ( CTRL+ALT+B ) by drag-and-dropping the tab.
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Completion suggestions
Get completion suggestions when defining new nodes. It will even insert the appropriate type

when selected! Completion suggestions have the Node type and can even display their docstring
when hovered over.

def new_transform(cv)
@ cv_scores
O cross_validation
dextract_fields( @ mean_cv_score
dict(
y_pred=np.ndarray,
cv_scores=list[float],
)

)

def cross_validation(

X: np.ndarray,
y: np.ndarray,
base_model: BaseEstimator,
splits: list[tuplel,
) — dict:
cv_scores = []
all_pred = np.zeros(y.shape[0])
for train_idx, eval_idx in splits:
model = clone(base_model)

Outline

The OUTLINE menu now displays a Apache Hamilton VSCode entry. Nodes and inputs from the
current Python file are listed and denoted by distinct icons.
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y - hamilton Ubuntu - Visual Studio Code
— @ 0. 00 O ¢# business_logic.py X
5 0l i import pandas as pd
EXPLORER

wun

nun

Follow Cursor

7 iz en ez _3wk_spend(spend: pd.Series) — pd.Series:

won

Sort By: Position .
y-Fo urn spend.rolling(3).mean()

Sort By: Name
v/ Sort By: Category . . ) X .
1d_per_signup(spend: pd.Series, signups: pd.Series) — pd.Series:

won nun

return spend / signups

f spend_mean(spend: pd.Series) — float:

wonn

return spend.mean()

spend_zero_mean(spend: pd.Series, spend_mean: float) — pd.Series:

won nun

return spend - spend_mean

spend_std_dev(spend: pd.Series) — float:

won nwun

return spend.std()

spend_zero_mean_unit_variance(spend_zero_mean: pd.Series, spend_std_dev: flo

won n

return spend_zero_mean / spend_std_dev

Symbol navigation
When entering symbol navigation ( CTRL+SHIFT+0 ), you can jump directly to any node definition.
Notice from the screenshot that it even pickups node defined in a decorator.
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analysis.py - hamilton [WSL: Ubuntu-20.04] - Visual Studio Code

= 0 B O A eyped

EXPLORER - @y.pred H symbols (4) (1)
€]y pred
@]y _pred
ly _pred

aconfig.when(preprocess="pca")

def X__pca(X_raw: np.ndarray, n_components: int = 5) — np.ndarray:
pca = PCA(n_components=n_components)
return pca.fit_transform(X_raw)

aconfig.when(model="1inear")
def base_model linear() — BaseEstimator:
return LinearRegression()

@config.when(model="random_forest")
def base _model_ _random_forest() — BaseEstimator:
return RandomForestRegressor()

QAR D O

aconfig.when(model="boosting")
def base_model__boosting() — BaseEstimator:
return HistGradientBoostingRegressor()

dextract_fields(
dict(
y_pred=np.ndarray,
cv_scores=list[float],

Extension walkthrough

Under the Apache Hamilton menu (the icon at the top), you can find a list of buttons. Selecting
walkthrough and then Get started with Apache Hamilton will launch an interactive menu to
get you set up along with some tips.

hamilton [WSL: Ubuntu-20.04] - Visual Studio Code

= © lp® P A |

HAMILTON: SUPPORT Get Started with VS Code B

Walkthrough

@ Hamilton docs Get Started with Hamilton Hamilton VSCode

Write dataflows interactively in VSCode
{3 Slack




236 IDE extension

Some of this content may become outdated since the extension is evolving quickly.

Roadmap

There are many features that we'd be interested in implementing. Let us know on Slack your
favorite ones!

- Go To Definition: jump to where the node defined

- Go To References: jump to where the node is a dependency

- Rename: rename a node across locations (can be tricky when mentioned in a decorator)
- Support dataflows spanning multiple modules

- Configure the visualization (i.e., match the Python features)

- Integrate with the Apache Hamilton Ul (e.g, click a node to open it's Apache Hamilton Ul page
and see execution details)

- Visualize notebook cells using the Apache Hamilton Jupyter extension (seems possible)

Language Server

The Apache Hamilton Language Server is an experimental feature under active development.
Edge cases, evolving features, and partial documentation are to be expected. Please open a
GitHub issue or reach out on Slack for troubleshooting!

The Apache Hamilton Language Server is an implementation of the Language Server Protocol
(LSP). It is designed to power the Apache Hamilton VSCode extension which can be installed
directly from the VSCode marketplace.

Language servers power IDE features like completion suggestion, go to definition, collect
document symbols, etc. The LSP standard was established to make servers portable across IDE
frontends (e.g., VSCode, PyCharm, Emacs). Learn more.


https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://marketplace.visualstudio.com/items?itemName=DAGWorks.hamilton-vsc
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
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Installation

If you're using the Apache Hamilton VSCode extension, you will prompted to install the language
server if it's not found. Simply click the button and it will install it in your current Python
interpreter.

You can also manually install the language server in your Python environment via

pip install "sf-hamilton[lsp]"

Developers

If you want to dig in the internals of the language server and integrate it with another IDE, you can
find the source code in the dev tools/ section of the Apache Hamilton GitHub repository. It is
also directly available on PyPi at sf-hamilton-lsp.

Note that the package name is hamilton_lsp when used directly via Python code.


https://github.com/apache/hamilton/tree/main/dev_tools/lsp
https://pypi.org/project/sf-hamilton-lsp/
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Integrations

This section showcases how Apache Hamilton integrates with popular frameworks.

dlt

dlt stands for “data load tool”. It's an open-source Python library providing a ton of data Sources
(Slack, Stripe, Google Analytics, Zendesk, etc.) and Destinations (S3, Snowflake, BigQuery,
Postgres, etc.). Pipelines make it easy to connect Sources and Destinations and provide
advanced engineering features such as table normalization, incremental loading, and automatic
schema evolution.

dlt is an “extract and load” tool and Apache Hamilton is a “transform” tool, allowing various usage
patterns.

On this page, you'll learn:
- Extract, Transform, Load (ETL)
- Extract, Load, Transform (ELT)

- dlt materializer plugin for Apache Hamilton

See this blog post for a more detailed discussion about ETL with dlt + Apache Hamilton

Extract, Transform, Load (ETL)

The key consideration for ETL is that the data has to move twice:

ingest raw data (dlt) -> transform (Apache Hamilton) -> store transformed data (dlt)
1. Extract: dlt moves the raw data to a processing server
2. Transform: on the server, Apache Hamilton executes transformations

3. Load: dlt moves the final data to its destination (database, dashboard, etc.)


https://dlthub.com/
https://blog.dagworks.io/p/slack-summary-pipeline-with-dlt-ibis
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Pros

- Reduce storage cost: raw data isn't stored

- Data centralization: transformed data is better separated from raw and low quality data
Cons

- Increased latency: data has to move twice

- Reduced flexibility: to try new transformations, data needs to

Extract

1. Create a dlt pipeline for raw data ingestion (see dlt guide).

2. Write the dlt pipeline execution code in run.py

# run.py
import dlt
import slack # NOTE this is dlt code, not an official Slack library

# define dlt pipeline to a local duckdb instance

extract_pipeline = dlt.pipeline(
pipeline_name="slack_raw",
destination="duckdb',
dataset_name="slack_community_backup"

)

# configure dlt slack source

source = slack.slack_source(
selected_channels=["general"], replies=True

)

# moves data from source to destination
raw_load_info = extract_pipeline.run(source)

Transform

1. Define the Apache Hamilton dataflow of transformations

# transform.py
import dlt
import pandas as pd

def _table_to_df(client, table_name: str) -> pd.DataFrame:
"""lLoad data as DataFrame using the dlt SQL client"""
with client.execute_query("SELECT * FROM %s" % table_name) as t:
return t.df()


https://dlthub.com/docs/walkthroughs/create-a-pipeline
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def general_message(pipeline: dlt.Pipeline) -> pd.DataFrame:
"""Load table "general_message from dlt data"""
with pipeline.sql_client() as client:
return _table_to_df(client, "general_message")

def general_replies_message(pipeline: dlt.Pipeline) -> pd.DataFrame:
"""lLoad table "general_replies_message from dlt data"""
with pipeline.sql_client() as client:
return _table_to_df(client, "general_replies_message")

def threads(
general_message: pd.DataFrame,
general_replies_message: pd.DataFrame,
) -> pd.DataFrame:
"""Reassemble from the union of parent messages and replies
columns = ["thread ts", "ts", "user", "text"]
return pd.concat(
[general_message[columns],
general_replies_message[columns]],
axis=0

l general_replies_message

DataFrame

___________ ! threads

DataFrame

DataFrame

1. Add the Apache Hamilton dataflow execution code to run.py

# run.py
from hamilton import driver
import transform # module containing dataflow definition

# pass the “transform™ module
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dr = driver.Builder().with_modules(transform).build()

# request the node "threads ; pass the dlt "pipeline  as inputs
results = dr.execute(["threads"],
inputs=dict(pipeline=extract_pipeline))

# "results” is a dictionary with key "threads”

Load

1. Create a 2nd dlt pipeline to load the transformed data. The pipeline_name should be different
from the Extract step.

# run.py
# define dlt pipeline to bigquery (our prod env)
load_pipeline = dlt.pipeline(
pipeline_name="slack_final",
destination="'bigquery',
dataset_name="slack_community_backup"
)
# pass the results from Apache Hamilton to dlt
data = results["threads"].to_dict(orient="records")
final_load_info = load_pipeline.run(data, table_name="threads")

ETL Summary

You need to set up your dlt pipeline for raw and transformed data, and define your Apache
Hamilton transformation dataflow. Then, your execution code consist of executing the ETL step in
sequence. It should look like this:

# run.py

import dlt

from hamilton import driver

import slack # NOTE this is dlt code, not an official Slack library
import transform # module containing dataflow definition

# EXTRACT

extract_pipeline = dlt.pipeline(
pipeline_name="slack_raw",
destination="duckdb"',
dataset_name="slack_community_backup"

)

source = slack.slack_source(
selected_channels=["general"], replies=True

)

raw_load_info = extract_pipeline.run(source)

# TRANSFORM
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dr = driver.Builder().with_modules(transform).build()

results = dr.execute(["threads"],

inputs=dict(pipeline=extract_pipeline))

# LOAD

load_pipeline = dlt.pipeline(
pipeline_name="slack_final",
destination="'bigquery',
dataset_name="slack_community_backup"

)
data = results["threads"].to_dict(orient="records")
final_load_info = load_pipeline.run(data, table_name="threads")

Extract, Load, Transform (ELT)

Compared to ETL, ELT moves data once.
ingest and store raw data (dlt) -> transform (Apache Hamilton)

Transformations happen within the data destination, typically a data warehouse. To achieve this,
we will leverage the Ibis library, which allows to execute data transformations directly on the
destination backend.

1. Extract & Load: dlt moves the raw data to the destination
2. Transform: Apache Hamilton + Ibis execute transformations within the destination
Pros

- Deduplicate computation: redundant operations can be optimized using raw and intermediary
data

- Simpler architecture: no transformation server is needed, unlike ETL
Cons
- Increased storage cost: more space is required to store raw and intermediary data

- Decreased data quality: the sprawl of data of various quality levels needs to be governed

Extract & Load

1. Create a dlt pipeline for raw data ingestion (see dlt guide).

2. Write the dlt pipeline execution code in run.py


https://ibis-project.org/
https://dlthub.com/docs/walkthroughs/create-a-pipeline

243

Integrations

# run.py
import dlt

import slack # NOTE this is dlt code, not an official Slack library

# define dlt pipeline to duckdb

pipeline = dlt.pipeline(
pipeline_name="slack",
destination="duckdb',
dataset_name="slack_community_backup"

)

# load dlt slack source

source = slack.slack_source(
selected_channels=["general"], replies=True

)

# execute dlt pipeline
load_info = pipeline.run(source)

Transform

1. Define a dataflow of transformations using Apache Hamilton + Ibis

# transform.py
import ibis
import ibis.expr.types as ir

def db_con(pipeline: dlt.Pipeline) -> ibis.BaseBackend:
backend = ibis.connect(f"{pipeline.pipeline_name}.duckdb")
ibis.set_backend(backend)
return backend

def general_message(db_con: ibis.BaseBackend, pipeline:
dlt.Pipeline) -> ir.Table:
"""Load table "general_message from dlt data"""
return db_con.table(
"general_message",
schema=pipeline.dataset_name,
database=pipeline.pipeline_name
).mutate(
thread_ts=ibis. .thread_ts.cast(str),
ts=ibis. .ts.cast(str),

)

def general_replies_message(db_con: ibis.BaseBackend, pipeline:
dlt.Pipeline) -> ir.Table:
"""Load table "general_replies_message from dlt data"""
return db_con.table(
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"general_replies_message",
schema=pipeline.dataset_name,
database=pipeline.pipeline_name

)

def threads(
general_message: ir.Table,
general_replies_message: ir.Table,
) -> ir.Table:
"""Create the union of “general_message and
"general_replies_message """
columns = ["thread_ts", "ts", "user", "text"]
return ibis.union(
general_message.select(columns),
general_replies_message.select(columns),

)

def insert_threads(threads: ir.Table) -> bool:

db_con = ibis.get_backend() # retrieves the backend set in
“db_con()"

db_con.create_table("threads", threads)

return True

2. Execute the Apache Hamilton dataflow to trigger transformations on the backend

# run.py

# hamilton transform

from hamilton import driver

import transform # module containing dataflow definition

dr = driver.Builder().with_modules(transform).build()

dr.execute(
["insert _threads"], # execute node “insert_threads’

inputs=dict(pipeline=pipeline) # pass the dlt pipeline

ELT Summary

You need to set up your dlt pipeline for raw, and define your Apache Hamilton transformation
dataflow. Then, your execution code consist of using dlt to move data to the backend and Apache
Hamilton + Ibis to execute transformations.

# run.py

import dlt

from hamilton import driver

import slack # NOTE this is dlt code, not an official Slack library
import transform # module containing dataflow definition
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# EXTRACT & LOAD

pipeline = dlt.pipeline(
pipeline_name="slack",
destination="duckdb"',
dataset_name="slack_community_backup"

)

source = slack.slack_source(
selected_channels=["general"], replies=True

)

load_info = pipeline.run(source)

# TRANSFORM
dr = driver.Builder().with_modules(transform).build()
results = dr.execute(
["insert_threads"], # query the “threads’ node
inputs=dict(pipeline=pipeline) # pass the dlt load info

dlt materializer plugin

We added custom Data Loader/Saver to plug dlt with Apache Hamilton. Compared to the previous
approach, it allows to include the dlt operations as part of the Apache Hamilton dataflow and
improve lineage / visibility.

See this notebook for a demo

DatalLoader

The DatalLoader allows to read in-memory data from a dlt.Resource. When working with
dlt.Source, you can access individual dlt.Resource with source.resource["source_name"].
This removes the need to write utility functions to read data from dlt (with pandas or Ibis).
Contrary to the previous ETL and ELT examples, this approach is useful when you don’t want to
store the dlt Source data. It effectively connects dlt to Apache Hamilton to enable “Extract,
Transform” (ET).

# run.py

from hamilton import driver

from hamilton.io.materialization import from_

import slack # NOTE this is dlt code, not an official Slack library
import transform

source = slack.source(selected_channels=["general"], replies=True)


https://github.com/apache/hamilton/blob/main/examples/dlt/dlt_plugin.ipynb
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dr = driver.Builder().with_modules(transform).build()

materializers = [

from_.dlt(
target="general_message", # node name assigned to the data
resource=source.resources["general_message"]
)
from_.d1t(
target="general_replies_message",
resource=source.resources["general_replies_message"]
),
]
# when using only loaders (i.e., “from_"), you need to specify

# "additional_vars  to compute, like you would in
“.execute(final_vars=["threads"])"
dr.materialize(*materializers, additional _vars=["threads"])

DataSaver

The DataSaver allows to write node results to any dlt.Destination. You'll need to define a
dlt.Pipeline with the desired dlt.Destination and you can specify arguments for the
pipeline.run() behavior (e.g., incremental loading, primary key, load_file_format). This provides
a “Transform, Load” (TL) connector from Apache Hamilton to dlt.

# run.py

import dlt

from hamilton import driver

from hamilton.io.materialization import to

import slack # NOTE this is dlt code, not an official Slack library
import transform

pipeline = dlt.pipeline(
pipeline_name="slack",
destination="duckdb"',
dataset_name="slack_community_backup"

)

dr = driver.Builder().with_modules(transform).build()

materializers = [
to.dlt(
id="threads__dlt", # node name
dependencies=["threads"],
table_name="slack_threads",
pipeline=pipeline,
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dr.materialize(*materializers)

Combining both

You can also combine both the DataLoader and DataSaver. You will see below that it's almost
identical to the ELT example, but now all operations are part of the Apache Hamilton dataflow!

# run.py

import dlt

from hamilton import driver

from hamilton.io.materialization import from_, to

import slack # NOTE this is dlt code, not an official Slack library
import transform

pipeline = dlt.pipeline(
pipeline_name="slack",
destination="duckdb"',
dataset_name="slack_community_backup"

)

source = slack.source(selected_channels=["general"], replies=True)
dr = driver.Builder().with_modules(transform).build()

materializers = [
from_.dlt(
target="general_message",
resource=source.resources["general_message"]

)

from_.dlt(
target="general_replies_message",
resource=source.resources["general_replies_message"]

0

to.dlt(
id="threads__dlt",
dependencies=["threads"],
table_name="slack_threads",
pipeline=pipeline,

)

]

dr.materialize(*materializers)
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Legend

e —
load_data.general_replies_message general_replies_message
Tuple DataFrame
threads threads_ dit
DataFrame DitDestinationSaver
load_data.general_message general_message
Tuple DataFrame
Next steps

- Our full code example to ingest Slack data and generate thread summaries is available on
GitHub.

- Another important pattern in data engineering is reverse ETL, which consists of moving data
analytics back to your sources (CRM, Hubspot, Zendesk, etc.). See this dlt blog to get started.

FastAPI

FastAPI is an open-source Python web framework to create APIs. It is a modern alternative to Flask
and a more lightweight option than Django. In FastAPIl, endpoints are defined using Python
functions. The parameters indicate the request specifications and the return value specifies the
response. Decorators are used to specify the HTTP methods (GET, POST, etc.) and to route the
request.

from typing import Union
from fastapi import FastAPI

app = FastAPI() # Instantiate the FastAPI server

dapp.get("/") # GET method with base route "/"
def read_root():
return {"Hello": "World"}

dapp.get("/items/{item_id}") # dynamic route with variable “item_id"
def read_item(item_id: int, qg: Union[str, None] = None):
return {"item_id": item_id, "q": q}


https://github.com/apache/hamilton/tree/main/examples/dlt
https://dlthub.com/docs/blog/reverse-etl-dlt
https://fastapi.tiangolo.com/
https://flask.palletsprojects.com/en/3.0.x/
https://www.djangoproject.com/
https://learn.microsoft.com/en-us/azure/architecture/best-practices/api-design
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if __name__ == "__main__
# launch the server with “uvicorn’
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) # specify host and
port

On this page, you'll learn how Apache Hamilton can help you:
- Test you application
- Reduce the friction from proof-of-concept to production

- Document your API

Challenges

1. Test your FastAPI application

FastAPl endpoints are simply decorated Python function, allowing a great deal of flexibility as to
what is executed (functions, classes, web requests, etc.). On one hand, we want to test that
endpoints are defined and behave properly by starting a server and testing the GET, POST, etc.
requests. FastAPI provides great documentation and tooling to do so. On the other hand, these
tests conflate the role of the FastAPI server and the endpoint behavior. To run them, a server-
client pair need to be created, which will slow down your test suite, and endpoints need to be
mocked to avoid connecting to a production environment. By coupling the role of the FastAPI
server and the endpoint behavior, more efforts and resources are needed to write and run tests.
The content of the endpoints and the structure of your codebase might make it difficult to test
endpoint logic outside the context of a FastAPI server.

2. Document your API

FastAPI already does a great job at automating APl documentation by integrating with Swagger Ul
and OpenAPI. It leverages the endpoints’ name, path, docstring, and type annotations, and also
allows to add descriptions and example inputs. However, since docstrings, descriptions, and
example inputs are not directly tied to the code, they risk becoming out of sync as changes are
made.

Apache Hamilton + FastAPI

Adding Apache Hamilton to your FastAPIl server can provide a better separation between the
dataflow and the APl endpoints. Each endpoint can use Driver.execute() to request variables
and wrap results into an HTTP response. Then, data transformations and interactions with


https://fastapi.tiangolo.com/tutorial/testing/
https://jestjs.io/docs/mock-functions
https://jestjs.io/docs/mock-functions
https://fastapi.tiangolo.com/how-to/configure-swagger-ui/
https://fastapi.tiangolo.com/how-to/separate-openapi-schemas/
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resources (e.g, database, web service) are curated into standalone Python modules and
decoupled from the server code.

Since Apache Hamilton dataflows will run the same way inside or outside FastAPI, you can write
simpler unit tests for Hamilton functions without defining a mock server and client. Additionnally,
visualizations for the defined Apache Hamilton dataflows can be added to the FastAPI Swagger Ul
documentation. They will remain in sync with the APl behavior because they are generated from
the code.

Example

In this example, we'll build a backend for a PDF summarizer application.

The full code can be found on GitHub

Client

The client defines an HTTP POST request to send a PDF file along a selected OpenAl GPT model,
the content type of the PDF file, and a query for the summarization. The files parameter allows
for multipart encoding uploads and data sets the content of the body of the request.

# client.py
from typing import IO
import requests

def post_summarize(
uploaded_pdf: IO[bytes],
openai_gpt_model: str,
content_type: str,
user_query: str,
) -> requests.Response:
"""POST request to summarize a PDF via the ~/summarize’
endpoint"""
return requests.post(
url="http://0.0.0.0:8000/summarize", # http://HOST:PORT/
ENDPOINT as specified in server.py
files=dict(pdf_file=uploaded_pdf),
data=dict(
openai_gpt_model=openai_gpt_model,
content_type=content_type,
user_query=user_query,

)

« For more complex FastAPI applications, you can automatically generate the client

L

code in Python and other languages (TypeScript, Rust, etc.)


https://fastapi.tiangolo.com/features/#automatic-docs
https://fastapi.tiangolo.com/features/#automatic-docs
https://github.com/apache/hamilton/tree/main/examples/LLM_Workflows/pdf_summarizer/backend/server.py
https://requests.readthedocs.io/en/latest/user/advanced/?highlight=files#post-multiple-multipart-encoded-files
https://fastapi.tiangolo.com/advanced/generate-clients/
https://fastapi.tiangolo.com/advanced/generate-clients/
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Backend dataflow with Apache Hamilton
Apache Hamilton transformations are defined in the module summarization.py. This includes

loading and chunking the raw text, summarizing chunks with the OpenAl API, and reducing chunks
into a final summary.

Visualization of the Apache Hamilton dataflow

Legend
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summarized_chunks
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Server definition with FastAPI
Then, the FastAPI server is defined in server.py . Notice a few things

- the Driver is built only once in the global context.
- the endpoint types are set using Annotated[...] to accept multipart encoded forms
- the HTTP POST request is passed as inputs tO Driver.execute()

- the Apache Hamilton results are wrapped into a Pydantic SummarizeResponse model

# server.py
from typing import Annotated

from fastapi import FastAPI, Form, UploadFile
from pydantic import BaseModel
from hamilton import driver

import summarization
app = FastAPI()

# build the Hamilton Driver with the summarization module
dr = (

driver.Builder()

.with_modules(summarization)

.build()


https://fastapi.tiangolo.com/tutorial/request-forms-and-files/?h=form#__tabbed_2_1
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class SummarizeResponse(BaseModel):
"""Response to the /summarize endpoint
summary: str

dapp.post("/summarize") # POST request, ~/summarize  endpoint
def summarize_pdf(
pdf_file: Annotated[UploadFile, Form()],
openai_gpt_model: Annotated[str, Form()],
content_type: Annotated[str, Form()],
user_query: Annotated[str, Form()],
) -> SummarizeResponse:
"""Summarize the text from the PDF file"""
results = dr.execute(
["summarized_text"],
inputs=dict(
pdf_source=pdf_file.file,
openai_gpt_model=openai_gpt_model,
content_type=content_type,
user_query=user_query,
)
)
return SummarizeResponse(summary=results["summarized_ text"])
if __name__ == "__main__
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) # specify host and
port

Visualize endpoints’ dataflow
The Apache Hamilton dataflow visualizations can be added to the automatically generated FastAPI
Swagger Ul documentation, which can be viewed at http://0.0.0.0:8000/docs

# server.py
# ... after defining all endpoints

# get the visualization

visualization = dr.visualize_execution(["summarized text"],
inputs=dict(pdf_source=bytes(), openai_gpt_model="", user_query=""))
# encode the PNG object into a base64 string

base64 viz =
base64.b64encode(visualization.pipe(format="png")).decode("utf-8")
# route[-1] is the last defined, i.e. “/summarize’

# append the base64 string of a PNG to the API endpoint text
description

app.routes[-1].description += f"""<img src="data:image/png;baseb4,
{base64_viz}"/"""


https://fastapi.tiangolo.com/features/#automatic-docs
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# ... before "if __name__ == "__main__":~

& If you are interested in a generic approach to add visualizations to all of your
endpoints, please reach out to us on Slack!

FastAP| &0 &5

/openapi.json

default A

POST /summarize Summarized Text N

Summarize the text from a PDF file

[snmmaﬂxn_:hunk_uf_ton _pmmpt] [ _text_from_: ies, _prompt]

str

Parameters Try it out

Benefits

- Separation of concerns: the decoupling between server.py and summarization.py makes it
easier to extend and test the server separately from the data transformations.

- Reusable code: the module summarization.py can be reused elsewhere with Apache Hamilton.
For instance, if you first started by building a proof-of-concept with Streamlit + Apache
Hamilton, the logic you produced could be reused to power your FastAPI server.

- Richer documentation: Apache Hamilton allows to view and better understand the dataflow of
an operation. This helps onboard new APl users and greatly facilitates transferring the
ownership of the API to other engineers.


https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
https://hamilton.apache.org/integrations/streamlit
https://hamilton.apache.org/integrations/streamlit
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Ibis

Ibis is the portable Python dataframe library. It allows you to define data transformations once
and execute them in multiple backends (BigQuery, DuckDB, PySpark, SQLite, Snowflake, Postgres,
Polars; see the full list). If you never used Ibis before, it should feel similar to SQL with a touch of
dataframes (e.g, pandas). You'll be primarily writing expressions (similar to an SQL query), which
compute values only after calling for execution via .to_pandas() for example.

On this page, you'll learn how Ibis + Apache Hamilton can help:
- Create a modular codebase for better collaboration and maintainability

- Reduce the development-production gap

Standalone Ibis

Here's an Ibis code snippet to load data from a CSV, compute features, and select columns / filter
rows. It illustrates typical feature engineering operations.

Reading the code, you'll notice that:

- We use “expression chaining”, meaning there’'s a series of .method() attached one after
another.

- The variable ibis._ is a special character referring to the current expression e.g, ibis._.pet
accesseses the column “pet” of the current table.

- The table method .mutate(coll=, col2=, ...) assigns new columns or overwrites existing
ones.

import ibis

raw_data_path =

feature_selection = [
"id", "has_children", "has_pet", "is_summer_brazil",
"service_time", "seasons", "disciplinary_failure",
"absenteeism_time_in_hours",

1,

# write the expression
feature_set = (
ibis.read_csv(sources=raw_data_path, table_name="absenteism")
.rename( "snake_case")
.mutate(
has_children=ibis.ifelse(ibis._.son > 0, 1, 0),
has_pet=ibis.ifelse(ibis._.pet > 0, 1, 0),


https://ibis-project.org/
https://ibis-project.org/support_matrix
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is_summer_brazil=ibis._.month_of_absence.isin([1, 2,
12]).cast(int),
)

.select(*feature_selection)
.filter(ibis.ifelse(ibis._.has_pet == 1, True, False))
)

# execute the expression
feature_df = feature_set.to_pandas()

Challenge 1 - Maintain and test large data transformations codebases

Ibis has an SQL-like syntax and supports chaining operations, allowing for powerful queries in a
few lines of code. Conversely, there's a risk of sprawling complexity as expressions as statements
are appended, making them harder to test and debug. Preventing this issue requires a lot of
upfront discipline and refactoring.

Challenge 2 - Orchestrate Ibis code in production

Ibis alleviates a major pain point by enabling data transformations to work across backends.
However, moving from dev to prod still requires some code changes such as changing backend
connectors, swapping unsupported operators, adding some orchestration and logging execution.
This is outside the scope of the Ibis project and is expected to be enabled by other means.

How Apache Hamilton complements lbis

Write modular Ibis code

Apache Hamilton was initially developed to structure pandas code for a large catalog of features,
and has been adopted by multiple organizations since. Its syntax encourages users to chunk code
into meaningful and reusable components, which facilitates documentation, unit testing, code
reviews, and improves iteration speed. These benefits directly translate to organizing Ibis code.

Now, we'll refactor the above code to use Apache Hamilton. Users have the flexibility to chunk
code at the table or the column-level depending on the needed granularity. This modularity is
particularly beneficial to Ibis because:

- Well-scoped functions with type annotations and docstring are easier to understand for new
Ibis users and facilitate onboarding.

- Unit testing and data validation becomes easier with smaller expressions. These checks become
more important when working across backends since the operation coverage varies and bugs
may arise.


https://blog.dagworks.io/p/tidy-production-pandas-with-hamilton-3b759a2bf562
https://ibis-project.org/support_matrix
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Table-level
Table-level operations might feel most familiar to SQL and Spark users. Also, Ibis + Apache
Hamilton is reminiscent of dbt for the Python ecosystem.

Working with tables is very efficient when your number of columns/features is limited, and you
don’t need full lineage. As you want to reuse components, you can progressively breakdown
“table-level code” in to “column-level code”.

The initial Ibis code is now 3 functions with type annotations and docstrings. We have a clear
sense of the expected external outputs and we could implement schema checks between
functions.

import ibis
import ibis.expr.types as ir

def raw_table(raw_data_path: str) -> ir.Table:
"""Load CSV from "raw_data_path™ into a Table expression
and format column names to snakecase
return (
ibis.read_csv(sources=raw_data_path, table_name="absenteism")
.rename("snake_case")

)

def feature_table(raw_table: ir.Table) -> ir.Table:
"""Add to "raw_table  the feature columns “has_children”
“has_pet™, and “is_summer_brazil’
return raw_table.mutate(
has_children=(ibis.ifelse(ibis. .son > 0, True, False)),
has_pet=ibis.ifelse(ibis._.pet > 0, True, False),
is_summer_brazil=ibis._.month_of_absence.isin([1, 2, 121),

)

def feature_set(
feature_table: ir.Table,
feature_selection: list[str],
condition: Optional[ibis.common.deferred.Deferred] = None,
) -> ir.Table:
"""Select feature columns and filter rows
return feature_ table[feature selection].filter(condition)
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feature_table

Table
feature_set
oottt Tt T T T e m a Table
: condition Optional ,
I feature_selection list :
I

Column-level
Apache Hamilton was built around column-level operations, which is most common in dataframe
libraries (pandas, Dask, polars).

Column-level code leads to fully-reusable feature definitions and a great level of lineage. Notably,
this allows to trace sensitive data and evaluate downstream impacts of code changes. However, it
is more verbose to get started with, but remember that code is more often read than written.

Now, the raw_table is loaded and the columns son, pet, and month_of_absence are extracted
to engineer new features. After transformations, features are joined with raw_table to create

feature_table.

import ibis

import ibis.expr.types as ir

from hamilton.function_modifiers import extract_columns
from hamilton.plugins import ibis_extensions

# extract specific columns from the table
dextract_columns("son", "pet", "month_of_absence")
def raw_table(raw_data_path: str) -> ir.Table:
"""Load the CSV found at "raw_data_path”™ into a Table expression
and format columns to snakecase
return (
ibis.read_csv(sources=raw_data_path, table_name="absenteism")
.rename( "snake_case")

)

# accesses a single column from “raw_table"

def has_children(son: ir.Column) -> ir.BooleanColumn:
"""True if someone has any children
return ibis.ifelse(son > 0, True, False)
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# narrows the return type from “ir.Column” to "ir.BooleanColumn’
def has_pet(pet: ir.Column) -> ir.BooleanColumn:

True if someone has any pets"""

return ibis.ifelse(pet > 0, True, False).cast(bool)

# typing and docstring provides business context to features
def is_summer_brazil(month_of_absence: ir.Column) ->
ir.BooleanColumn:

"""True if it is summer in Brazil during this month

People in the northern hemisphere are likely to take vacations
to warm places when it's cold locally

return month_of_absence.isin([1, 2, 12])

def feature_ table(
raw_table: ir.Table,
has_children: ir.BooleanColumn,
has_pet: ir.BooleanColumn,
is_summer_brazil: ir.BooleanColumn,
) -> ir.Table:
"""Join computed features to the "raw_data  table"""
return raw_table.mutate(
has_children=has_children,
has_pet=has_pet,
is_summer_brazil=is_summer_brazil,

)

def feature_set(
feature_table: ir.Table,
feature_selection: list[str],
condition: Optional[ibis.common.deferred.Deferred] = None,
) -> ir.Table:
"""Select feature columns and filter rows
return feature_table[feature_selection].filter(condition)

pet has_pet
Column BooleanColumn
month_of _absence is_summer_brazil
Column BooleanColumn

son has_children
Column BooleanColumn

feature_table
Table
feature_set
""""""""" Table
condition Optional ,
feature_selection list :
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If your code is already structured with Apache Hamilton, migrating from pandas to Ibis should

be easy!

Orchestrate Ibis anywhere

Apache Hamilton is ideal orchestrate for Ibis because it has the lightest footprint and will run
anywhere Python does (script, notebook, FastAPI, pyodide, etc.) In fact, the Apache Hamilton
library only has 4 dependencies. You don't need “framework code” to get started, just plain Python
functions. When moving to production, Apache Hamilton has all the necessary features to
complement Ibis such as swapping components, configurations, and lifecycle hooks for logging,
alerting, and telemetry.

A simple usage pattern of Apache Hamilton + Ibis is to use the @config.when function modifier. In
the following example, we have alternative implementations for the backend connection, which
will be used for computing and storing results. When running your code, specify in your config
backend="duckdb" or backend="bigquery" to swap between the two.

# ibis_dataflow.py

import ibis

import ibis.expr.types as ir

from hamilton.function_modifiers import config

# ... entire dataflow definition

aconfig.when(backend="duckdb")

def backend _connection__duckdb(
connection_string: str

) -> ibis.backends.BaseBackend:
"""Connect to DuckDB backend"""
return ibis.duckdb.connect(connection_string)

aconfig.when(backend="bigquery")
def backend_connection__bigquery(
project_id: str,
dataset_id: str,
) -> ibis.backends.BaseBackend:
"""Connect to BigQuery backend
Install dependencies via “pip install ibis-framework[bigquery]"
return ibis.bigquery.connect(
project_id=project_id,
dataset_id=dataset_id,
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def insert_results(
backend_connection: ibis.backends.BaseBackend,
result_table: ir.Table,
table_name: str

"""Execute expression and insert results

backend _connection.insert(
table_name=table_name,P
obj=result_table

A potential architecture for Ibis + Apache Hamilton would be running CRON jobs on GitHub
actions to periodically launch AWS Lambda with the Apache Hamilton code to orchestrate Ibis
data transformations directly on the backend. This has the potential to save meaningful cloud
egress cost and greatly diminishes orchestration complexity.

How Ibis complements Apache Hamilton

Performance boost

Leveraging DuckDB as the default backend, Apache Hamilton users migrating to Ibis should
immediately find performance improvements both for local dev and production. In addition, the
portability of Ibis has the potential to greatly reduce development time.

Atomic data transformation documentation

Apache Hamilton can directly produce a dataflow visualization from code, helping with project
documentation. Ibis pushes this one step further by providing a detailed view of the query plan
and schemas. See this Ibis visualization for the column-level Apache Hamilton dataflow defined
above. It includes all renaming, type casting, and transformations steps (Please open the image in
a new tab and zoom in ).
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Working across rows with user-defined functions (UDFs)

Apache Hamilton and most backends are designed to work primarily on tables and columns, but
sometimes you'd like to operate over a row (think of pd.DataFrame.apply() ). However, pivoting

tables is costly and manually iterating over rows to collect values and create a new column is
quickly inconvenient. By using scalar user-defined functions (UDFs), Ibis makes it possible to
execute arbitrary Python code on rows directly on the backend.

Using @ibis.udf.scalar.python creates a non-vectorized function that iterates row-by-row.
See the docs to use backend-specific UDFs with @ibis.udf.scalar.builtin and create
vectorized scalar UDFs.

For instance, you could embed rows of a text column using an LLM APl without leaving the
datawarehouse.

import ibis
import ibis.expr.types as ir

def documents(path: str) -> ir.Table:
"""load text documents from file"""
return ibis.read_parquet(sources=path, table_name="documents")

# the function name would need to start
# with ~_° to avoid being added as a node
@ibis.udf.scalar.python
def _generate_summary(author: str, text: str, prompt_template: str) -
> str:
"""UDF Function to call the OpenAI API line by line"""
prompt = prompt_template.format(author=author, text=text)
client = openai.OpenAI(...)


https://ibis-project.org/reference/scalar-udfs
https://ibis-project.org/reference/scalar-udfs
https://ibis-project.org/posts/duckdb-for-rag/
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try:
response = client.chat.completions.create(...)
return_value = response.choices[0].message.content
except Exception:
return_value =
return return_value

def prompt_template() -> str:
return """summarize the following text from {author} and add
contextual notes based on it biography and other written work

TEXT
{text}

def summaries(documents: ir.Table, prompt_template: str) -> ir.Table
"""Compute the UDF against the family"""
return documents.mutate(
summary=_generated_summary (

_.author,
_.text,
prompt_template=prompt_template
)
)
prompt_template
Legend str
-
' input
L __ text
. Column
function /\ / summary
o ______ ) Column
| I documents author e
1 path str
I ! Table Column summaries
_______

Table

Ibis + Apache Hamilton - a natural pairing

- What works in dev works in prod: |bis and Apache Hamilton allows you to write and structure
code data transformations portable across backends for small and big data alike. The two being
lightweight libraries, installing dependencies on remote workers is fast and you're unlikely to
ever encounter dependency conflicts.
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- Maintainable and testable code: Modular functions facilitates writing high quality code and
promotes reusability, compounding your engineering efforts. It becomes easier for new users to
contribute to a dataflow and pull requests are merged faster.

- Greater visibility: With Apache Hamilton and Ibis, you have incredible visualizations directly
derived from your code. This is a superpower for documentation, allowing users to make sense
of a dataflow, and also reason about changes.

Streamlit

Streamlit is an open-source Python library to create web applications with minimal effort. It's an
effective solution to create simple dashboards, interactive data visualizations, and proof-of-
concepts for data science, machine learning, and LLM applications. On this page, you'll learn how
Apache Hamilton can help you:

- Write cleaner Streamlit applications
- Reduce friction transition between proof-of-concept and production

- Improve Streamlit performance

Challenges

1. Hard to read Ul and data flows.

Complex Streamlit applications become difficult to debug because of the complex flow of
operations. In the simplest case, all the code is under the main function call app() and
components are added to the Ul from top to bottom. Components can be nested under columns,
containers, expanders, tabs, and more to organize them on the page by using the with
Python syntax. A good coding practice is to separate data transformations from Ul, but Streamlit
can blur these lines. Things are further complicated when components are added or updated
outside the main scope app() . As user interactions, data transformations, state, and Ul layout
become difficult to trace, risks of breaking changes increase and debugging is more challenging.

import streamlit as st
# external function writing component
def greeting(name: str) -> None:

st.write(f"Hello {name}")

def app():
st.title("Apache Hamilton + Streamlit ...g’)


https://streamlit.io/
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main, settings = st.tabs(["Main", "Settings"])
left, right = st.columns(2)

# nesting tabs and columns
with main:
with left:
name = st.text_input(
"What's your name", value="Lambda"

)
with right:
greeting(name)
if name__ == " main__":

A This example is illustratory and real applications quickly get more complex.

2. Cache and state management

When the user interacts with the app, Streamlit reruns your entire Python code to update what's
displayed on screen (reference). By default, no data is preserved between updates and all
computations need to be executed again. Your application suffer slow downs if you handle large
dataframes or load machine learning models in memory for instance. To overcome this limitation,
Streamlit allows to cache expensive operations via the decorators @streamlit.cache_data and
@streamlit.cache_resource and store state variables between reruns in the global dictionary
streamlit.session_state Or via key attributes of input widget. State management becomes
particularly important when building a multipage app where each page is defined in a separate
Python file and can’'t communicate by default.

import pandas as pd
import streamlit as st

ast.cache_data
def load_dataframe(path: str) -> pd.DataFrame:
return pd.read_parquet(path)

def app():
st.title("Apache Hamilton + Streamlit &«&’")

# load_dataframe() will only run the first time
df = load_dataframe(path="...")
st.dataframe(df)

# If favorite flavor is known, display it.
if st.session_state("favorite"):
st.write(f"Your favorite ice cream is:
{st.session_state['favorite']}")


https://docs.streamlit.io/get-started/fundamentals/main-concepts#data-flow
https://docs.streamlit.io/library/advanced-features/caching
https://docs.streamlit.io/library/api-reference/session-state
https://docs.streamlit.io/get-started/tutorials/create-a-multipage-app
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# Ask for the favorite ice cream until an answer 1is given.
else:
st.text_input(
"What's your favorite ice cream flavor?",
key="favorite", # key to st.session_state

A This example is illustratory and real applications quickly get more complex.

Apache Hamilton + Streamlit

Adding Apache Hamilton to your Streamlit application can provide a better separation between
the dataflow and the Ul logic. They pair nicely together because Apache Hamilton is also stateless.
Once defined, each call to Driver.execute() is independent. Therefore, on each Streamlit rerun,
you use Driver.execute() to complete computations. Using Apache Hamilton this way allows you
to write your dataflow into Python modules and outside of the Streamlit.

Example

In this example, we will build a simple financial dashboard based on the Kaggle Bank Marketing
Dataset.

The full code can be found on GitHub

First, Apache Hamilton transformations are defined in the module logic.py. This includes
downloading the data from the web, getting unique values for job, conducting groupby
aggregates, and creating plotly figures.

# logic.py

import pandas as pd

import plotly.express as px

from plotly.graph_objs import Figure

def base_df() -> pd.DataFrame:

path = "https://raw.githubusercontent.com/Lexie88rus/bank-
marketing-analysis/master/bank.csv"

return pd.read_csv(path)

def all_jobs(base_df: pd.DataFrame) -> list[str]:
return base_df["job"].unique().tolist()


https://www.kaggle.com/datasets/janiobachmann/bank-marketing-dataset
https://www.kaggle.com/datasets/janiobachmann/bank-marketing-dataset
https://github.com/apache/hamilton/tree/main/examples/streamlit
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def balance_per_job(base_df: pd.DataFrame) -> pd.DataFrame:
return base_df.groupby("job")["balance"].describe().astype(int)

def balance_per_job_boxplot(base_df: pd.DataFrame) -> Figure:
return px.box(base_df, x="job", y="balance")

def job_df(base_df: pd.DataFrame, selected_job: str) -> pd.DataFrame:
return base_df.loc[base_df['job']==selected_job]

def job_hist(job_df: pd.DataFrame) -> Figure:
return px.histogram(job_df["balance"])

job_df w job_hist
DataFrameJ Figure

balance_per_job_boxplot

Figure
base_df
DataFrame
balance_per_job
DataFrame

all_jobs
list
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Then, the Streamlit Ul is defined in app.py . Notice a few things:
- app.py doesn’t have to depend on pandas and plotly.
 @cache_resource allows to create the Driver only once.

- @cache_data on _execute() will automatically cache any Apache Hamilton result based on the
combination of arguments ( final_vars, inputs, and overrides )

- get_state_inputs() and get_state_overrides() will collect values from user inputs.

- execute() parses the inputs and overrides from the state and call _execute() .

# app.py
from typing import Optional

from hamilton import driver
import streamlit as st

import logic

# cache to avoid rebuilding the Driver
ast.cache_resource
def get_hamilton_driver() -> driver.Driver:
return (
driver.Builder()
.with_modules(logic)
.build()
)

# cache results for the set of inputs
ast.cache_data
def _execute(
final_vars: list[str],
inputs: Optional[dict] = None,
overrides: Optional[dict] = None,
) -> dict:
"""Generic utility to cache Apache Hamilton results
dr = get_hamilton_driver()
return dr.execute(final_vars, inputs=inputs, overrides=overrides)

def get_state_inputs() -> dict:
keys = ["selected_job"]
return {k: v for k, v in st.session_state.items() if k in keys}

def get_state_overrides() -> dict:
keys = []
return {k: v for k, v in st.session_state.items() if k in keys}
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def execute(final_vars: list[str]):
return _execute(final_vars, get_state_inputs(),
get_state_overrides())

def app():
st.title("Apache Hamilton + Streamlit &«&’")

# run the base data that always needs to be displayed
data = execute(["all_jobs", "balance_per_job",
"balance_per_job_boxplot"])

# display the base dataframe and plotly chart
st.dataframe(data["balance_per_job"])
st.plotly_chart(data["balance_per_job_boxplot"])

# get the selection options from data

# store the selection in the state “selected_job~

st.selectbox("Select a job", options=datal["all_jobs"],
key="selected_job")

# get the value from the dict

st.plotly_chart(execute(["job_hist"])["job_hist"])

if _name__ == "_main__":
app()
Benefits

- Clearer scope: the decoupling between app.py and logic.py makes it easier to add data
transformations or extend Ul, and debug errors associated with either.

- Reusable code: the module logic.py can be reused elsewhere with Apache Hamilton.

o If you are building a proof-of-concept with Streamlit, your Apache Hamilton module will be
able to grow with your project and be useful for your production pipelines.

o If you are already building dataflows with Apache Hamilton, using it with Streamlit ensures
your dashboard metrics have the same implementation with your production pipeline (i.e,
prevent implementation skew)

- Performance boost: by caching the Hamilton Driver and its execution call, we are able to
effectively cache all data operations in a few lines of code. Furthermore, Apache Hamilton can
scale further by using a remote task executor on a separate machine from the Streamlit
application.


https://building.nubank.com.br/dealing-with-train-serve-skew-in-real-time-ml-models-a-short-guide/
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dbt

If you're familiar with DBT, you likely noticed that it can fill a similar role to Apache Hamilton.
What DBT does for SQL files (organizing functions, providing lineage capabilities, making testing
easier), Apache Hamilton does for python functions.

Many projects span the gap between SQL and python, and Apache Hamilton is a natural next step
for an ML workflow after extracting data from DBT.

This example shows how you can use DBT's new python capabilities to integrate a Apache
Hamilton dataflow with a DBT pipeline.

Find the full, working dbt project here.


https://docs.getdbt.com/docs/build/python-models
https://github.com/apache/hamilton/tree/main/examples/dbt
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Code Comparisons

This section showcases what Apache Hamilton code looks like in comparison to other popular
libraries and frameworks.

Kedro

Both Kedro and Apache Hamilton are Python tools to help define directed acyclic graph (DAG) of
data transformations. While there’s overlap between the two in terms of features, we note two
main differences:

- Kedro is imperative and focuses on tasks; Apache Hamilton is declarative and focuses on
assets.

- Kedro is heavier and comes with a project structure, YAML configs, and dataset definition to
manage; Apache Hamilton is lighter to adopt and you can progressively opt-in features that you
find valuable.

On this page, we'll dive into these differences, compare features, and present some code snippets
from both tools.

See this GitHub repository to compare a full project using Kedro or Apache Hamilton.

Imperative vs. Declarative

There are 3 steps to build and run a dataflow (a DAG, a data pipeline, etc.)
1. Define transformation steps
2. Assemble steps into a dataflow

3. Execute the dataflow to produce data artifacts (tables, ML models, etc.)


https://github.com/apache/hamilton/tree/main/examples/kedro
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1. Define steps

Imperative ( Kedro ) vs. declarative (Apache Hamilton ) leads to significant differences in Step 2
and Step 3 that will shape how you work with the tool. However, Step 1 remains similar. In fact,

both tools use the term nodes to refer to steps.

Kedro (imperative)

# nodes.py
import pandas as pd

def _is_true(x: pd.Series) ->
pd.Series:
return x == "t"

def preprocess_companies(companies:

pd.DataFrame) -> pd.DataFrame:
"""Preprocesses the data for

companies."""
companies["iata_approved"] =

_is_true(companies["iata_approved"])
return companies

def preprocess_shuttles(shuttles:

pd.DataFrame) -> pd.DataFrame:
"""Preprocesses the data for

shuttles."""
shuttles["d_check_complete"] =

_is_true(

shuttles["d_check_complete"]

)

shuttles["moon_clearance_complete"]
= _is_true(

shuttles["moon_clearance_complete"]

)

return shuttles

def create_model_input_table(
shuttles: pd.DataFrame,

companies: pd.DataFrame,

) -> pd.DataFrame:

Combines all data to create a
model input table."""
shuttles = shuttles.drop("id",

axis=1)

Apache Hamilton (declarative)

# dataflow.py
import pandas as pd

def _is_true(x: pd.Series) ->
pd.Series:
return x == "t"

def

companies_preprocessed(companies:

pd.DataFrame) -> pd.DataFrame:
"""Companies with added column

“iata_approved """
companies["iata_approved"] =

_is_true(companies["iata_approved"])
return companies

def shuttles_preprocessed(shuttles:
pd.DataFrame) -> pd.DataFrame:
"""Shuttles with added columns
"d_check_complete”
and
"moon_clearance_complete .
shuttles["d_check_complete"] =
_is_true(
shuttles["d_check_complete"]
)

shuttles["moon_clearance_complete"]
= _is_true(

shuttles["moon_clearance_complete"]

)

return shuttles

def model_input_table(
shuttles_preprocessed:

pd.DataFrame,
companies_preprocessed:

pd.DataFrame,

) -> pd.DataFrame:
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Kedro (imperative) Apache Hamilton (declarative)

model_input_table =

shuttles.merge( """Table containing shuttles and
companies, companies data."""
left_on="company_id", right_on="1id" shuttles_preprocessed =
) shuttles_preprocessed.drop("id",
model_input_table = axis=1)
model_input_table.dropna() model_input_table =
return model_input_table shuttles_preprocessed.merge(

companies_preprocessed,
left_on="company_id", right_on="id"
)
model_input_table =
model_input_table.dropna()
return model_input_table

The function implementations are exactly the same. Yet, notice that the function names and
docstrings were edited slightly. Imperative approaches like Kedro typically refer to steps as tasks
and prefer verbs to describe “the action of the function”. Meanwhile, declarative approaches such
as Apache Hamilton describe steps as assets and use nouns to refer to “the value returned by the
function”. This might appear superficial, but it relates to the difference in Step 2 and Step 3.

2. Assemble dataflow

With Kedro, you need to take your functions from Step 1 and create node objects, specifying the
node’s name, inputs, and outputs. Then, you create a pipeline from a set of nodes and Kedro
assembles the nodes into a DAG. Imperative approaches need to specify how tasks (Kedro nodes)
relate to each other.

With Apache Hamilton, you pass the module containing all functions from Step 1 and let Apache
Hamilton create the nodes and the dataflow. This is possible because in declarative approaches
like Apache Hamilton, each function defines a transform and its dependencies on other functions.
Notice how in Step 1, model_input_table() has parameters shuttles_preprocessed and
companies_preprocessed, which refers to other functions in the module. This contains all the
required information to build the DAG.

Kedro (imperative) Apache Hamilton (declarative)
# pipeline.py # run.py
from kedro.pipeline import Pipeline, from hamilton import driver

node, pipeline import dataflow # module containing
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Kedro (imperative) Apache Hamilton (declarative)
from nodes import ( definitions
create_model_input_table,
preprocess_companies, # pass the module to the "Builder t
preprocess_shuttles ‘Driver”
) dr =

driver.Builder().with_modules(datafl
def create_pipeline(**kwargs) ->
Pipeline:
return pipeline(

[

node(

func=preprocess_companies,
inputs="companies",

outputs="preprocessed_companies",
name="preprocess_companies_node",
?

node(

func=preprocess_shuttles,
inputs="shuttles",

outputs="preprocessed_shuttles”,
name="preprocess_shuttles_node",
I

node(

func=create_model_input_table,
inputs=[

"preprocessed_shuttles",

"preprocessed_companies"”

1,
outputs="model_input_table",
name="create_model_input_table_node",

)
]
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Benefits of adopting a declarative approach
- Less errors since you skip manual node creation (i.e., strings will lead to typos).
- Handle complexity since assembling a dataflow remains the same for 10 or 1000 nodes.

- Maintainability improves since editing your functions (Step 1) modifies the structure of your
DAG, removing the pipeline definition as a failure point.

- Readability improves because you can understand how functions relate to each other without
jumping between files.

These benefits of Apache Hamilton encourage developers to write smaller functions that are
easier to debug and maintain, leading to major code quality gains. On the opposite, the burden of
node and pipeline creation as projects grow in size lead to users stuffing more and more logic
in a single node, making it increasingly harder to maintain.

3. Execute dataflow

The primary way to execute Kedro pipelines is to use the command line tool with kedro run --
pipeline=my_pipeline . Pipelines are typically designed for all nodes to be executed while reading
data and writing results while going through nodes. It is closer to macro-orchestration frameworks
like Airflow in spirit.

On the opposite, Apache Hamilton dataflows are primarily meant to be executed
programmatically (i.e., via Python code) and return results in-memory. This makes it easy to use
Apache Hamilton within a FastAPI service service or to power an LLM application.

For comparable side-by-side code, we can dig into Kedro and use the SequentialRunner
programmatically. To return pipeline results in-memory we would need to hack further with

kedro.io.MemoryDataset .

Apache Hamilton also has rich support for I/0 operations (see Feature comparison below)

Kedro (imperative) Apache Hamilton (declarati
# run.py # run.py
from kedro.runner import SequentialRunner import pandas as pd
from kedro.framework.session import KedroSession from hamilton impor

from kedro.framework.startup import bootstrap_project import dataflow
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Kedro (imperative)

from pipeline import create_pipeline

driver.Builder().wi
from Step 2

shuttles=pd.rea

# ~ from Step 2 dr =
bootstrap_project(".") # "
with KedroSession.create() as session: inputs =
context = session.load_context() companies=pd.re
catalog = context.catalog companies.parquet")
pipeline = shuttles.parquet"),
create_pipeline().to_nodes("create_model_input_table") )
SequentialRunner().run(pipeline, catalog) results

# doesn't return values in-memory

An imperative pipeline like Kedro is a series of step, just like a recipe. The user can specify “from
nodes”

For declarative dataflows like Apache Hamilton you request assets / nodes by name and the tool
will determine the required nodes to execute (here "model_input_table" ) avoiding wasteful

VALUE}

or “to nodes” to slice the pipeline and not have to execute it in full.

compute

The simple Python interface provided by Apache Hamilton allows you to potentially define and
execute your dataflow from a single file, which is great to kickstart an analysis or project. Just use

python dataflow.py to execute it!

# dataflow.py
import pandas as pd

def

def

def

_is_true(x: pd.Series) -> pd.Series:
return x == "t"

preprocess_companies(companies: pd.DataFrame) -> pd.DataFrame:
"""Preprocesses the data for companies.
companies["iata_approved"] = _is_true(companies["iata_approved"])
return companies

preprocess_shuttles(shuttles: pd.DataFrame) -> pd.DataFrame:

"""Preprocesses the data for shuttles."""

shuttles["d_check_complete"] = _is_true(
shuttles["d_check_complete"]

)

shuttles["moon_clearance_complete"] = _is_true(
shuttles["moon_clearance_complete"]
)

Apache Hamilton (declarati

dr.execut
inputs=inputs)
# results is a dict
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return shuttles

def create_model_input_table(

shuttles: pd.DataFrame, companies: pd.DataFrame,

) -> pd.DataFrame:

if

__name__ == "_ main__

"""Combines all data to create a model input table.
shuttles = shuttles.drop("id", axis=1)
model_input_table = shuttles.merge(

companies, left_on="company_id", right_on="id"
)

model_input_table = model_input_table.dropna()
return model_input_table

from hamilton import driver
import dataflow # import itself as a module

dr = driver.Builder().with_modules(dataflow).build()

inputs=dict(
companies=pd.read_parquet("path/to/companies.parquet"),
shuttles=pd.read_parquet("path/to/shuttles.parquet"),

)

results = dr.execute(["model_input_table"], inputs=inputs)

Framework weight

After imperative vs. declarative, the next largest difference is the type of user experience they
provide. Kedro is a more opiniated and heavier framework; Apache Hamilton is on the opposite
end of the spectrum and tries to be the lightest library possible. This changes the learning curve,

adoption, and how each tool will integrate with your stack.

Kedro

Kedro is opiniated and provides clear guardrails on how to do things. To begin using it, you'll
need to learn to:

- Define nodes and register pipelines

- Register datasets using the data catalog construct

- Pass parameters to data runs

- Configure environment variables and credentials

- Navigate the project structure
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This provides guidance when building your first data pipeline, but it's also a lot to take in at once.
As you'll see in the project comparison on GitHub, Kedro involves more files making it harder to
navigate. Also, it's reliant on YAML which is generally seen as an unreliable format. If you have an
existing data stack or favorite library, it might clash with Kedro's way of thing (e.g, you have
credentials management tool; you prefer Hydra for configs).

Apache Hamilton w~~~~~~~~~~~n~nn

Apache Hamilton attempts to get you started quickly. In fact, this page pretty much covered what
you need to know:

- Define nodes and a dataflow using regular Python functions (no need to even import

hamilton !)
- Build a priver with your dataflow module and call .execute() to get results

Apache Hamilton allows you to start light and opt-in features as your project's requirements
evolve (data validation, scaling compute, testing, etc.). Python is a powerful language with rich
editor support and tooling hence why it advocates for “everything in Python” instead of external
configs in YAML or JSON. For example, parameters, data assets, and configurations can very much
live as dataclasses within a .py file. Apache Hamilton was built with an extensive plugin system.
There are many extensions, some contributed by users, to adapt Apache Hamilton to your project,
and it's easy for you to extend yourself for further customization.

In fact, Apache Hamilton is so lightweight, you could even run it inside Kedro !

Feature comparison

Trait Kedro Apache Hamilton
Focuses on Tasks (imperative) Assets (declarative)
Code structure Opiniated. Makes assumptions Unopiniated.

about pipeline creation &
registration and configuration.

In-memory Execute using a KedroSession, Default
execution but returning values in-memory
is hacky.


https://github.com/apache/hamilton/tree/main/examples/kedro
https://noyaml.com/
https://hydra.cc/
https://docs.kedro.org/en/stable/kedro_project_setup/session.html
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Trait

I/0 execution

Expressive DAG

definition

Column-level
transformations

LLM applications

Static DAG
visualizations
Interactive DAG
viewer

Data validation

Executors

Executor extension

Dynamic branching

Kedro

Datasets and Data Catalog

e

e

@ Limited by in-memory
execution and return values.

Need installed to
export static visualizations.

Kedro Viz

Kedro Viz

Community Pandera plugin

Sequential,
multi-threading

multiprocessing,

Spark integration

e

Apache Hamilton

Data Savers & Loaders

Function modifiers

declarative APl in-memory
makes it easy (RAG app).

dataflow,
execution path, query what's
upstream, etc. directly in a
notebook or output to a file

Visualize entire

(.png, .svg, etc). Single
dependency is graphviz.
Apache Hamilton Ul

Native and Pandera plugin
Sequential, async,

multiprocessing, multi-threading

PySpark, Dask, Ray, Modal

Parallelizable/Collect for
parallelization.

easy


https://docs.kedro.org/en/stable/data/data_catalog.html
https://hamilton.apache.org/concepts/materialization/
https://hamilton.apache.org/concepts/function-modifiers/
https://github.com/apache/hamilton/tree/main/examples/LLM_Workflows/retrieval_augmented_generation
https://github.com/kedro-org/kedro-viz
https://github.com/apache/hamilton/tree/main/ui
https://github.com/Galileo-Galilei/kedro-pandera/releases
https://hamilton.apache.org/how-tos/run-data-quality-checks/
https://docs.kedro.org/en/stable/nodes_and_pipelines/run_a_pipeline.html
https://docs.kedro.org/en/stable/nodes_and_pipelines/run_a_pipeline.html
https://docs.kedro.org/en/stable/integrations/pyspark_integration.html
https://blog.dagworks.io/p/expressing-pyspark-transformations
https://hamilton.apache.org/concepts/parallel-task/
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Trait Kedro Apache Hamilton

Command line tool

(cLn

Node and pipeline
testing

Jupyter notebook
extensions

Both Kedro and Apache Hamilton provide applications to view dataflows/pipelines and interact
with their results. Here, Kedro provides a lighter webserver and Ul, while Apache Hamilton offers
a production-ready containerized application.

Trait Kedro Viz Apache Hamilton Ul
Interactive

dataflow viewer

View code

definition of nodes

Code versioning Git SHA (may be out of sync with  Node-level versioning at runtime
actual code)

Collapsible view
Tag nodes
Execution (—)

observability
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Trait Kedro Viz Apache Hamilton Ul

Artifact lineage
and versioning

Column-level (—)

lineage

Compare run

results

Rich artifact view Preview 5 dataframe rows. Automatic statistical profiling of

Metadata about artifact (column various dataframe libraries.
count, row count, size).

More information

For a full side-by-side example of Kedro and Apache Hamilton, visit this GitHub repository

For more questions, join our Slack Channel

Dagster

Here are some code snippets to compare the macro orchestrator Dagster to the micro
orchestrator Apache Hamilton. Apache Hamilton can run inside Dagster, but you wouldn't run
Dagster inside Apache Hamilton.

While the two have different scope, there's a lot of overlap between the two both in terms of
functionality and API. Indeed, Dagster’'s software-defined assets introduced in 2022 matches
Apache Hamilton's declarative approach and should feel familiar to users of either.


https://github.com/apache/hamilton/tree/main/examples/kedro
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
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TL;DR

Trait Apache Hamilton Dagster

Declarative API

Dependencies

Macro
orchestration

Micro orchestration
(i.e., dbt ,
LangChain )

Code structure

LLM applications

Lineage

Lightweight library with minimal
dependencies ( numpy, pandas,
typing_inspect ). Minimizes
dependency conflicts.

DIY or in tandem with Dagster,
Airflow, Prefect, Metaflow, etc.

Can run anywhere (locally,
notebook, macro orchestrator,
FastAPI, Streamlit, pyodide, etc.)

Since it's micro, there are no
restrictions.

Well-suited for LLM applications
since it's a micro orchestration
framework.

column-level
utilities to

Fine-grained /
lineage. Includes
explore lineage.

Heavier framework/system with
several dependencies ( pydantic,

sqlalchemy, requests, Jinja2,
protobuf ). urllib3 on which
depends requests introduced

breaking changes several times
and pydantic Vv1 and v2 are
incompatible.

Includes: manual, schedules,

sensors, conditional execution

X

Since it's macro, a certain code
structure is required to properly
package code. The prevalent use
of relative imports in the tutorial
reduces code reusability.

X

Coarser operations to reduce
orchestration and I/0O overhead.


https://hamilton.apache.org/integrations/fastapi/
https://hamilton.apache.org/integrations/streamlit/
https://blog.dagworks.io/p/retrieval-augmented-generation-reference-arch
https://hamilton.apache.org/how-tos/use-hamilton-for-lineage/
https://hamilton.apache.org/how-tos/use-hamilton-for-lineage/
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Trait

Visualization

Run tracking

Experiment
Managers

Materializers

Data validation

Versioning
operations

Versioning data

In-memory
Execution

Task-based
Execution

Dynamic branching

Hooks

Apache Hamilton

View the dataflow and produce
visual artifacts. Configurable and

supports  extensive  custom
styling.

DAGWorks (premium)

Has an experiment manager
plugin

Data Savers & Loaders

Native validators and pandera
plugin

Nodes and dataflow versions are
derived from code.

Automated code version + data

value are used to read from

cache or compute new results
with DiskCacheAdapter

Default

TaskBasedExecutor

Parallelizable/Collect

Lifecycle hooks (easier to extend)

Dagster

Export Daster Ul in .svg. No
styling.

Dagster Ul

X

|0 Managers

Asset checks (experimental),
pandera integration

Asset code version is specified
manually.

asset code version +
upstream changes are used to
trigger re-materialization

Manual

Materialize in-memory

Default

Mapping/Collect

Op Hooks


https://hamilton.apache.org/concepts/visualization/
https://hamilton.apache.org/concepts/visualization/
https://docs.dagworks.io/capabilities
https://blog.dagworks.io/p/building-a-lightweight-experiment
https://blog.dagworks.io/p/building-a-lightweight-experiment
https://hamilton.apache.org/concepts/materialization/
https://docs.dagster.io/_apidocs/io-managers
https://hamilton.apache.org/how-tos/run-data-quality-checks/
https://hamilton.apache.org/how-tos/run-data-quality-checks/
https://docs.dagster.io/_apidocs/asset-checks
https://docs.dagster.io/integrations/pandera
https://docs.dagster.io/concepts/assets/software-defined-assets#asset-code-versions
https://docs.dagster.io/concepts/assets/software-defined-assets#asset-code-versions
https://docs.dagster.io/concepts/assets/software-defined-assets#asset-code-versions
https://docs.dagster.io/_apidocs/io-managers
https://hamilton.apache.org/reference/drivers/Driver/#taskbasedgraphexecutor
https://hamilton.apache.org/concepts/parallel-task/
https://docs.dagster.io/_apidocs/dynamic
https://hamilton.apache.org/reference/lifecycle-hooks/
https://docs.dagster.io/concepts/ops-jobs-graphs/op-hooks#op-hooks
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Trait Apache Hamilton Dagster

Plugins Spark, Dask, Ray, Datadog, polars, Spark, Dask, polars, pandera,
pandera, and more (Apache Databricks, Snowflake, Great
Hamilton is less restrictive and Expections, and more (Dagster

easier to extend) integrations are more involved to
develop)
Interactive Jupyter Magic, VSCode extension ) ¢

Development

Dataflow definition

HackerNews top stories

Apache Hamilton Dagster
from hamilton.function_modifiers import from dagster import AssetExecut
extract_columns MetadataValue, asset, Materiali
NEWSTORIES_URL = "https://hacker- aasset
news.firebaseio.com/v0/topstories.json" def topstory_ids() -> None:
newstories_url = "https://h
def topstory_ids(newstories_url: str = news.firebaseio.com/v0/topstori
NEWSTORIES _URL) -> list[int]: top_new_story_ids =
"""Query the id of the top HackerNews requests.get(newstories_url).js
stories"""
return os.makedirs("data", exist_o
requests.get(newstories_url).json()[:100] with open("data/topstory_id
as f:
dextract_columns("title") json.dump(top_new_story
def topstories(topstory_ids: list[int]) -
> pd.DataFrame: dasset(deps=[topstory_ids])
"""Query the top HackerNews stories def topstories(context: AssetEx
based on ids""" -> MaterializeResult:
results = [] with open("data/topstory_id
for item_id in topstory_ids: as f:
item = requests.get( topstory_ids = json.loa
f"https://hacker-
news.firebaseio.com/v0/item/ results = []

{item_id}.json" for item_id in topstory_ids


https://blog.dagworks.io/p/expressing-pyspark-transformations
https://hamilton.apache.org/reference/lifecycle-hooks/DDOGTracer/
https://docs.dagster.io/integrations
https://docs.dagster.io/integrations
https://docs.dagster.io/integrations
https://hamilton.apache.org/how-tos/use-in-jupyter-notebook/#use-hamilton-jupyter-magic
https://marketplace.visualstudio.com/items?itemName=ThierryJean.hamilton
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Apache Hamilton

).json()
results.append(item)
return pd.DataFrame(results)

def most_frequent_words(title: pd.Series)
-> dict[str, int]:
"""Compute word frequency in
HackerNews story titles"""
STOPWORDS = ["a", "the", "an", "of",
"to", "in",
"for", "and", "with",
"on", "is", "\u2013"]
word_counts = {}
for raw_title in title:
for word in
raw_title.lower().split():
word = word.strip(".,-!?:;()
[1'\"-")
if len(word) == 0:
continue

if word in STOPWORDS:
continue

word _counts[word] =
word_counts.get(word, 0) + 1
return word_counts

def
top_25_words_plot(most_frequent_words:
dict[str, int]) -> Figure:
"""Bar plot of the frequency of the
top 25 words in HackerNews titles"""
top_words = {
pair[0]: pair[1]
for pair in sorted(
most_frequent_words.items(),
key=lambda x: x[1], reverse=True

)[:25]
}

fig = plt.figure(figsize=(10, 6))

plt.bar(list(top_words.keys()),
list(top_words.values()))

plt.xticks(rotation=45, ha="right")

plt.title("Top 25 Words in Hacker News
Titles")

Dagster

item = requests.get(
f"https://hacker-
news.firebaseio.com/v0/item/{it
).json()
results.append(item)

if len(results) % 20 ==
context.log.info(f"
{len(results)} items so far.")

df = pd.DataFrame(results)
df.to_csv("data/topstories.

return MaterializeResult(

metadata={
"num_records": len(
"preview":
MetadataValue.md(df.head().to_m
}

)

dasset(deps=[topstories])
def most_frequent_words() -> Ma

stopwords = ["a", "the", "a
"in",
"for", "and",
"is"]
topstories pd.read_csv("d

topstories.csv")

word counts = {}
for raw_title in topstories
title = raw_title.lower
for word in title.split
word = word.strip("
[1'\"-")
if cleaned_word in
len(cleaned_word) < 0:
continue

word_counts[cleaned
word_counts.get(word, 0) + 1

top_words = {
pair[0]: pair[1]
for pair in sorted(
word_counts.items()
x[1], reverse=True
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plt.tight_Tlayout()
return fig

dextract_columns("registered_at")
def signups(hackernews_api:
DataGeneratorResource) -> pd.DataFrame:
"""Query HackerNews signups using a
mock API endpoint™"""
return
pd.DataFrame(hackernews_api.get_signups())

def earliest_signup(registered_at:
pd.Series) -> int:
"""Earliest signup on HackerNews
return registered_at.min()

def latest_signup(registered_at:
pd.Series) -> int:
"""lLatest signup on HackerNews
return registered_at.min()

)[:25]
}

plt.figure(figsize=(10, 6))

plt.bar(list(top_words.keys
list(top_words.values()))

plt.xticks(rotation=45, ha=

plt.title("Top 25 Words in
Titles")

plt.tight_layout()

buffer = BytesIO()

plt.savefig(buffer, formats=

image_data =
base64.b64encode(buffer.getvalu

md_content = f"![img](data:
png;base64,{image_data.decode()

with open("data/most_freque
"w") as f:
json.dump(top_words, f)

return MaterializeResult(
metadata={"plot":
MetadataValue.md(md_content)}
)

masset

def signups(hackernews_api:

DataGeneratorResource) -> Mater
signups =

pd.DataFrame(hackernews_api.get

signups.to_csv("data/signup

return MaterializeResult(
metadata={
"Record Count": len
"Preview":
MetadataValue.md(signups.head()
"Earliest Signup":
signups["registered_at"].min(),
"Latest Signup":
signups["registered_at"].max(),

)
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Apache Hamilton

topstory_ids
list
topstories
DataFrame
title
Series

‘ most_frequent_words}

dict

top_25_words_plot
Figure

Key points

Trait

Define operations

Data I/O

Lineage

Legend

signups
DataFrame
registered_at
Series

latest_signup earliest_signup
int int

Apache Hamilton

Uses the native Python function
signature. The dataflow s
assembled based on function/
parameter names and type
annotations.

Loading/Saving is decoupled
from the dataflow definition. The
code becomes more portable and
facilitates moving from dev to
prod.

Favors granular operations and
fine-grained lineage. For
example, most_frequent_words()
operates on a single column and
the top_25_ words_plot is its own
function.

Code Comparisons

Dagster

FH signups

Never materialized

Dagster

Uses the @asset decorator to
transform function in operations
and specify dependencies by
passing functions.

Each asset code operations is
coupled with 1/0. Hard-coding
this behavior
maintainability.

reduces

Favors chunking dataflow into
meaningful assets to reduce the
orchestration and 1/0 overhead
per operation. Finer lineage is
complex to achieve and requires


https://blog.dagworks.io/p/separate-data-io-from-transformation
https://blog.dagworks.io/p/separate-data-io-from-transformation
https://blog.dagworks.io/p/separate-data-io-from-transformation
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Trait Apache Hamilton Dagster
using @op, agraph, a@job, and
dasset (ref)
Documentation Uses the native Python Uses MaterializeResult to store

docstrings. Further metadata can
be added using the atag
decorator.

Dataflow execution

HackerNews top stories

Apache Hamilton

import os

from hamilton import driver

metadata.

Dagster

from dagster impo
AssetSelectio
Definitions,

from hamilton.io.materialization import to
from hamilton.plugins import matplotlib_extensions

import dataflow # import module with dataflow
definition
from mock_api import DataGeneratorResource

def main():
dr = (
driver.Builder()
.with_modules(dataflow) # pass the module
.build()
)

# load environment variable

num_days =
os.environ.get("HACKERNEWS_NUM_DAYS_WINDOW")

inputs = dict( # mock an API connection

hackernews_api=DataGeneratorResource(num_days=num_days),

)

# define I/0 operations; decoupled from dataflow def

define_asset_
load_assets_f
EnvVar,

)

from . import ass
from .resources i
DataGeneratorReso

# load assets fro
all_assets =
load_assets_from_
# select assets t
hackernews_job =
define_asset_job(
selection=AssetSe

# load environmen
num_days =
EnvVar.int( "HACKE
defs = Definition
assets=all_as
jobs=[hackern


https://docs.dagster.io/guides/dagster/how-assets-relate-to-ops-and-graphs
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materializers = [

Dagster

resources={

to.json( # JSON file type connection
id="most_frequent_words.json", "hackerne
dependencies=["most_frequent_words"], DataGeneratorReso
path="data/most_frequent_words.json", },
) )
to.csv( # CSV file type
id="topstories.csv",
dependencies=["topstories"],
path="data/topstories.csv",
I
to.csv(
id="signups.csv",
dependencies=["signups"],
path="data/signups.csv",
)y
to.plt( # Use matplotlib.pyplot to render
id="top_25_words_plot.plt",
dependencies=["top_25_words_plot"],
path="data/top_25_words_plot.png",
I
]
# visualize materialization plan without executing
code
dr.visualize_materialization(
*materializers,
inputs=inputs,
output_file_path="dataflow.png"
)
# pass I/0 operations and inputs to materialize
dataflow
dr.materialize(*materializers, inputs=inputs)
if _name__ == "_main__":
main()
Key points
Trait Apache Hamilton Dagster
Execution Define a Driver using the Load assets from Python modules
instructions Builder object. It automatically using load_assets_from_modules

assembles the graph from the then create an asset job by
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Trait Apache Hamilton Dagster
dataflow definition found in selecting assets to include.
dataflow.py Finally, create a Definitions
object to register on the
orchestrator.

Execution plane

Data I/0O

Driver.materialize() executes
the dataflow in a Python process.
Can be called as a script, using
the CLI, or programmatically.

I/0 is decoupled from dataflow
definition. People responsible for
deployment can manage data
sources without refactoring the

The asset job is executed by the
orchestrator, either through
Dagster Ul, by a scheduler/
sensor/trigger, or via the CLI.

Data 1/0 is coupled with data
assets which simplifies the
execution code at the code of
reusability.

dataflow. (Data 1/O can be
coupled if wanted.)

Framework code Leverages a maximum  of
standard Python

(imports, env variables, etc.).

Most constructs requires Dagster-
specific  code to leverage
protobuf serialization.

mechanisms

More information

For a full side-by-side example of Dagster and Apache Hamilton, visit this GitHub repository

For more questions, join our Slack Channel!

LangChain

Here we have some code snippets that help compare a vanilla code implementation with
LangChain and Apache Hamilton.

LangChain’s focus is on hiding details and making code terse.


https://blog.dagworks.io/p/a-command-line-tool-to-improve-your
https://blog.dagworks.io/p/a-command-line-tool-to-improve-your
https://docs.dagster.io/concepts/assets/asset-jobs
https://docs.dagster.io/concepts/assets/asset-jobs
https://github.com/apache/hamilton/tree/main/examples/dagster
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
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Apache Hamilton’s focus instead is on making code more readable, maintainable, and importantly

customizeable.

So don’t be surprised that Apache Hamilton's code is “longer” - that's by design. There is also little
abstraction between you, and the underlying libraries with Apache Hamilton. With LangChain
they're abstracted away, so you can't really see easily what's going on underneath.

Rhetorical question: which code would you rather maintain, change, and update?

A simple joke example

Simple Invocation

Apache Hamilton

# hamilton_invoke.py
from typing import List

import openai

def 1lm_client() -> openai.OpenAI:
return openai.OpenAI()

def joke_prompt(topic: str) -> str:
return f"Tell me a short joke
about {topic}"

def joke_messages(joke_prompt:
str) -> List[dict]:

return [{"role": "user",
"content": joke_prompt}]

def joke_response(llm_client:
openai.OpenAl,
joke_messages:
List[dict]) -> str:
response =
1lm_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=joke_messages,
)

return

Vanilla

from typing import List
import openai

prompt_template = "Tell me a short
joke about {topic}"
client = openai.OpenAI()

def call_chat_model(messages:
List[dict]) -> str:
response =
client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
)
return
response.choices[0].message.content

def invoke_chain(topic: str) ->
str:

prompt_value =
prompt_template.format(topic=topic)

messages = [{"role": "user",
"content": prompt_value}]
return

call_chat_model(messages)
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Apache Hamilton

response.choices[0].message.content

if __name__ == "__main__":
import hamilton_invoke

from hamilton import driver

dr = (
driver.Builder()

.with_modules(hamilton_invoke)

.build()
)

dr.display_all_functions("hamilton-

invoke.png")
print(dr.execute(["joke_response"],

inputs={"topic": "ice cream"}))

lim_client

OpenAl

joke_response

str

The Hamilton DAG visualized

A streamed joke example

Vanilla

print(invoke_chain("ice

cream"))

With Apache Hamilton we can just swap the call function to return a streamed response. Note: you
could use @configwhen to include both streamed and non-streamed versions in the same DAG.

Streamed Version

Apache Hamilton

# hamilton_streamed.py
from typing import Iterator, List

Vanilla

from
from

typing import List
typing import Iterator


file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-invoke.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-invoke.png
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Apache Hamilton

import openai

def 1lm_client() -> openai.OpenAl:
return openai.OpenAI()

def joke_prompt(topic: str) -> str:
return (
f"Tell me a short joke
about {topic}"
)

def joke_messages(
joke_prompt: str) ->
List[dict]:
return [{"role": "user",
"content":
joke_prompt}]

def joke_response(
1lm_client: openai.OpenAlI,
joke_messages: List[dict])
-> Iterator[str]:
stream =
1lm_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=joke_messages,
stream=True
)
for response in stream:
content =
response.choices[0].delta.content
if content is not None:
yield content

if __name__ == "__main__
import hamilton_streaming
from hamilton import driver

dr = (
driver.Builder()

Vanilla

import openai

prompt_template = "Tell me a short
joke about {topic}"
client = openai.OpenAI()

def stream_chat_model(
messages: List[dict]) ->
Iterator[str]:
stream =
client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
stream=True,
)
for response in stream:
content =
response.choices[0].delta.content
if content is not None:
yield content

def stream_chain(topic: str) ->
Iterator[str]:
prompt_value =
prompt_template.format(topic=topic)
return stream_chat_model(
[{"role": "user",
"content": prompt_value}])

if __name__ == "__main__
for chunk in stream_chain("ice
cream"):
print(chunk, end="",
flush=True)

.with_modules(hamilton_streaming)

.build()
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Apache Hamilton

dr.display_all_functions(
"hamilton-streaming.png"
)

result = dr.execute(
["joke_response"],
inputs={"topic": "ice
cream"
)
for chunk in
result["joke_response"]:
print(chunk, end="",
flush=True)

Legend

mode

lim_client

OpenAl

typing.Any joke_response

Iterator

cooTTTn joke_prompt joke_
' topic str
o ' str list

The Hamilton DAG visualized

A “batch” parallel joke example

Vanilla

In this batch example, the joke requests are parallelized. Note: with Apache Hamilton you can
delegate to many different backends for parallelization, e.g. Ray, Dask, etc. We use multi-threading

here.

Batch Parallel Version

Apache Hamilton

# hamilton_batch.py
from typing import List

import openai

from hamilton.execution import

Vanilla

from concurrent.futures import
ThreadPoolExecutor
from typing import List

import openai


file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-streamed.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-streamed.png
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Apache Hamilton

executors

from hamilton.htypes import Collect
from hamilton.htypes import
Parallelizable

def 1lm_client() -> openai.OpenAI:
return openai.OpenAI()

def topic(
topics: list[str]) ->
Parallelizable[str]:

for _topic in topics:
yield _topic

def joke_prompt(topic: str) -> str:
return f"Tell me a short joke
about {topic}"

def joke_messages(
joke_prompt: str) ->
List[dict]:
return [{"role": "user",
"content":
joke_prompt}]

def joke_response(llm_client:
openai.OpenAIl,
joke_messages:
List[dict]) -> str:
response =
1lm_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=joke_messages,
)
return
response.choices[0].message.content

def joke_responses(
joke_response:
Collect[str]) -> List[str]:
return list(joke_response)

Vanilla

prompt_template = "Tell me a short
joke about {topic}"
client = openai.OpenAI()

def call_chat_model(messages:
List[dict]) -> str:
response =
client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
)
return
response.choices[0].message.content

def invoke_chain(topic: str) ->
str:

prompt_value =
prompt_template.format(topic=topic)

messages = [{"role": "user",

"content":

prompt_value}]

return
call_chat_model(messages)

def batch_chain(topics: list) ->
list:
with
ThreadPoolExecutor(max_workers=5)
as executor:
return list(

executor.map(invoke_chain, topics)

)

if __name__ == "__main__
print(
batch_chain(
["ice cream",
"spaghetti", "dumplings"]

)
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if __name__ == "__main__
import hamilton_batch

from hamilton import driver

dr = (
driver.Builder()
.with_modules(hamilton_batch)
.enable_dynamic_execution(

allow_experimental_mode=True

)

.with_remote_executor(

executors.MultiThreadingExecutor(5)
)
.build()
)

dr.display_all_functions("hamilton-
batch.png")
print(
dr.execute(
["joke_responses"],
inputs={
"topics": ["ice
cream",

"spaghetti",

"dumplings"]
}
)
)

# can still run single chain
with overrides
# and getting just one response
print(
dr.execute(
["joke_response"],
overrides={"topic":
"lettuce"}
)
)

Vanilla
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input |
_—— -

lim_client
OpenAl

joke_responses
list

A topic joke_prompt joke_1
! topics list —
v Parallelizable str list

The Hamilton DAG visualized

A “async” joke example

Here we show how to make the joke using async constructs. With Apache Hamilton you can mix
and match async and regular functions, the only change is that you need to use the async

Hamilton Driver.

Async Version

Apache Hamilton

# hamilton_async.py
from typing import List

import openai
def 1lm_client() ->

openai.AsyncOpenAIl:
return openai.AsyncOpenAI()

def joke_prompt(topic: str) -> str:

return (
f"Tell me a short joke
about {topic}"
)

def joke_messages(
joke_prompt: str) ->
List[dict]:
return [{"role": "user",
"content":
joke_prompt}]

Vanilla

from typing import List

import openai

prompt_template = "Tell me a short
joke about {topic}"
client = openai.OpenAI()

async_client = openai.AsyncOpenAI()

async def acall_chat_model(
messages: List[dict]) -> str:
response = await (

async_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,

)
)

return
response.choices[0].message.content

async def ainvoke_chain(topic: str) -


file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-batch.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-batch.png
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async def joke_response(
1lm_client:
openai.AsyncOpenAI,
joke_messages: List[dict])
-> str:
response = await (

1lm_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=joke_messages,
)
)

return
response.choices[0].message.content

if _name__ == "_main__
import asyncio

import hamilton_async

from hamilton import base
from hamilton import
async_driver

dr = async_driver.AsyncDriver(

{},

hamilton_async,

result_builder=base.DictResult()
)

dr.display_all_functions("hamilton-
async.png")
loop = asyncio.get_event_loop()
result =
loop.run_until_complete(
dr.execute(
["joke_response"],
inputs={"topic": "ice
cream"

)

print(result)

)

Vanilla

> str:
prompt_value =
prompt_template.format(
topic=topic
)

messages = [{"role": "user",
"content":
prompt_value}]
return await
acall_chat_model(messages)

if __name__ == "__main__
import asyncio

loop = asyncio.get_event_loop()

result = loop.run_until_complete(
ainvoke chain("ice cream"

)

print(result)
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_____

lim_client

AsyncOpenAl
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joke_response
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The Hamilton DAG visualized.

Switch LLM to completion for joke

Here we show how to make the joke switching to a different openAl model that is for completion.
Note: we use the @configwhen construct to augment the original DAG and add a new function
that uses the different OpenAl model.

Completion Version

Apache Hamilton Vanilla

# hamilton_completion.py import openai

from typing import List

prompt_template = "Tell me a short
joke about {topic}"

client = openai.OpenAI()

import openai

from hamilton.function_modifiers

import config
def call_1lm(prompt_value: str) ->
str:

def 1lm_client() -> openai.OpenAI:
return openai.OpenAI()

def joke_prompt(topic: str) -> str:

return f"Tell me a short joke
about {topic}"

def joke_messages(
joke_prompt: str) ->
List[dict]:
return [{"role": "user",
"content":
joke_prompt}]

aconfig.when(type="completion")
def joke_response__completion(

response =
client.completions.create(
model="gpt-3.5-turbo-
instruct",
prompt=prompt_value,
)

return response.choices[0].text

def invoke_1lm_chain(topic: str) -
> str:
prompt_value =
prompt_template.format(topic=topic)
return call_1lm(prompt_value)


file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-async.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-async.png
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1lm_client: openai.OpenAl,

print(invoke_11lm_chain("ice

joke_prompt: str) -> str: cream"))

response =
1lm_client.completions.create(
model="gpt-3.5-turbo-
instruct",
prompt=joke_prompt,
)

return response.choices[0].text

aconfig.when(type="chat")
def joke_response__chat(
1lm_client: openai.OpenAlI,
joke_messages: List[dict])
-> str:
response =
1lm_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=joke_messages,
)
return
response.choices[0].message.content

if _name__ == "__main__
import hamilton_completion

from hamilton import driver

dr = (
driver.Builder()
.with_modules(hamilton_completion)
.with_config({"type":
"completion"})
.build()
)

dr.display_all_functions(
"hamilton-completion.png"

)
print(
dr.execute(
["joke_response"],
inputs={"topic": "ice
cream"
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Apache Hamilton Vanilla

dr = (
driver.Builder()
.with_modules(hamilton_completion)
.with_config({"type":
"chat"})

)

dr.display_all_functions("hamilton-
chat.png")
print(
dr.execute(
["joke_response"],
inputs={"topic": "

.build()

ice
cream"

Legend

config

lim_client joke_response
type OpenAl str
typing.Any

e

:_ ; N _t_ B joke_prompt joke_messages
opic str
o : str list

The Hamilton DAG visualized with configuration provided for the completion path.
Note the dangling node - that's normal, it's not used in the completion path.

Switch to using Anthropic

Here we show how to make the joke switching to use a different model provider, in this case it's
Anthropic. Note: we use the @configwhen construct to augment the original DAG and add a new

functions to use Anthropic.

Anthropic Version


file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-completion.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-completion.png
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# hamilton_anthropic.py
import anthropic
import openai

from hamilton.function_modifiers import
config

aconfig.when(provider="openai")
def 1lm_client__openai() ->
openai.OpenAl:

return openai.OpenAI()

aconfig.when(provider="anthropic")
def 1lm_client__anthropic() ->
anthropic.Anthropic:

return anthropic.Anthropic()

def joke_prompt(topic: str) -> str:
return (
"Human:\n\n"
"Tell me a short joke about
{topic}\n\n"
"Assistant:"
).format(topic=topic)

aconfig.when(provider="openai")
def joke_response__openai(
1lm_client: openal.OpenAlI,
joke_prompt: str) -> str:
response =
1lm_client.completions.create(
model="gpt-3.5-turbo-instruct",
prompt=joke_prompt,
)

return response.choices[0].text

aconfig.when(provider="anthropic")
def joke_response__anthropic(
1lm_client: anthropic.Anthropic,
joke_prompt: str) -> str:
response =

Vanilla

import anthropic

prompt_template = "Tell me a shor
joke about {topic}"
anthropic_template = f"Human:
\n\n{prompt_template}\n\nAssistan
anthropic_client =
anthropic.Anthropic()

def call_anthropic(prompt_value:
-> str:
response =
anthropic_client.completions.crea
model="claude-2",
prompt=prompt_value,
max_tokens_to_sample=256,
)

return response.completion

def invoke_anthropic_chain(topic:
str) -> str:
prompt_value =
anthropic_template.format(topic=t
return
call_anthropic(prompt_value)

if __name__ == "__main__
print(invoke_anthropic_chain(
cream"))
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1lm_client.completions.create(
model="claude-2",
prompt=joke_prompt,
max_tokens_to_sample=256

)

return response.completion

if __name__ == "__main__
import hamilton_invoke_anthropic

from hamilton import driver

dr = (
driver.Builder()
.with_modules(hamilton_invoke_anthropic)
.with_config({"provider":
"anthropic"})
.build()
)

dr.display_all_functions(
"hamilton-anthropic.png"

)
print(
dr.execute(
["joke_response"],
inputs={"topic": "ice cream"
)
)
dr = (
driver.Builder()
.with_modules(hamilton_invoke_anthropic)
.with_config({"provider":
"openai"})
.build()
)
print(
dr.execute(
["joke_response"],
inputs={"topic": "ice
cream"
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provider
typing.Any

lim_client

Anthropic
joke_response

str

joke_prompt

str

The Hamilton DAG visualized with configuration provided to use Anthropic.

Logging

Here we show how to log more information about the joke request. Apache Hamilton has lots of
customization options, and one out of the box is to log more information via printing.

Logging

Apache Hamilton

# run.py

from hamilton import driver, lifecycle

import hamilton_anthropic

dr = (

driver.Builder()

.with_modules(hamilton_anthropic)
.with_config({"provider": "anthropic"})
# we just need to add this line to get

things p

# to the console; see DAGWorks for a more

rinting

off-the-shelf
# solution.

.with_adapters(lifecycle.PrintLn(verbosity=2))

.build()

)

print(

dr.execute(

["joke_response"],
inputs={"topic": "ice cream"

Vanilla

import anthropic

prompt_template = "Tell me

{topic}"

anthropic_template = f"Huma
\n\n{prompt_template}\n\nAs
anthropic_client = anthropi

def call_anthropic(prompt_v
response =
anthropic_client.completion
model="claude-2",
prompt=prompt_value
max_tokens_to_sampl

)

return response.complet

def invoke_anthropic_chain_
str) -> str:
print(f"Input: {topic}"


file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-anthropic.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-anthropic.png
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Apache Hamilton Vanilla

) prompt_value =
) anthropic_template.format(t
print(f"Formatted promp
output = call_anthropic
print(f"Output: {output
return output

if __name__ == "__main__

print(invoke_anthropic_chai
cream"))

Fallbacks

Fallbacks are pretty situation and context dependent. It's not that hard to wrap a function in a try/
except block. The key is to make sure you know what's going on, and that a fallback was triggered.
So in our opinion it's better to be explicit about it

Logging
Apache Hamilton Vanilla
def invoke_chain_with_fallback(topic:
import hamilton_anthropic str) -> str:
from hamilton import driver try:
return invoke_chain(topic) #
anthropic_driver = ( noga: F821
driver.Builder() except Exception:
.with_modules(hamilton_anthropic) return
.with_config({"provider": invoke_anthropic_chain(topic)
"anthropic"}) # noga: F821

.build()
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Apache Hamilton Vanilla
) if _name__ == "'_main__"':
openai_driver = (
driver.Builder() print(invoke_chain_with_fallback("ice

.with_modules(hamilton_anthropic) cream"))
.with_config({"provider":

"openai"})
.build()

)

try:
print(
anthropic_driver.execute(
["joke_response"],
inputs={"topic":
"ice cream"
)
)
except Exception:
# this 1s the current way to
do fall backs
print(
openai_driver.execute(
["joke_response"],
inputs={"topic":
"ice cream"

)
)

Airflow

For more details see this Apache Hamilton + Airflow blog post.
TL;DR:

1. Apache Hamilton complements Airflow. It'll help you write better, more modular, and testable
code.

2. Apache Hamilton does not replace Airflow.


https://blog.dagworks.io/p/supercharge-your-airflow-dag-with
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High-level differences:

- Apache Hamilton is a micro-orchestator. Airflow is a macro-orchestrator.

- Apache Hamilton is a Python library standardizing how you express python pipelines, while
Airflow is a complete platform and system for scheduling and executing pipelines.

- Apache Hamilton focuses on providing a lightweight, low dependency, flexible way to define
data pipelines as Python functions, whereas Airflow is a whole system that comes with a web-
based Ul, scheduler, and executor.

- Apache Hamilton pipelines are defined using pure Python code, that can be run anywhere that
Python runs. While Airflow uses Python to describe a DAG, this DAG can only be run by the
Airflow system.

- Apache Hamilton complements Airflow, and you can use Apache Hamilton within Airflow. But
the reverse is not true.

- You can use Apache Hamilton directly in a Jupyter Notebook, or Python web-service. You can't
do this with Airflow.

Code examples:

Looking at the two examples below, you can see that Apache Hamilton is a more lightweight and
flexible way to define data pipelines. There is no scheduling information, etc required to run the
code because Apache Hamilton runs the pipeline in the same process as the caller. This makes it
easier to test and debug pipelines. Airflow, on the other hand, is a complete system for scheduling
and executing pipelines. It is more complex to set up and run. Note: If you stuck the contents of
run.py in a function within the example_dag.py, the Apache Hamilton pipeline could be used in
the Airflow PythonOperator!

Apache Hamilton:

The below code here shows how you can define a simple data pipeline using Apache Hamilton.
The pipeline consists of three functions that are executed in sequence. The pipeline is defined in
a module called pipeline.py, and then executed in a separate script called run.py, which imports
the pipeline module and executes it.

# pipeline.py
def raw_data() -> list[int]:
return [1, 2, 3]

def processed_data(raw_data: list[int]) -> list[int]:
return [x * 2 for x in datal
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def load_data(process_data: list[int], client: SomeClient) -> dict:
metadata = client.send_data(process_data)
return metadata

# run.py -- this 1is the script that executes the pipeline
import pipeline

from hamilton import driver

dr = driver.Builder().with_modules(pipeline).build()
metadata = dr.execute(['load data'l],
inputs=dict(client=SomeClient()))

Airflow:

The below code shows how you can define the same pipeline using Airflow. The pipeline consists
of three tasks that are executed in sequence. The entire pipeline is defined in a module called
example_dag.py, and then executed by the Airflow scheduler.

# example_dag.py

from airflow import DAG

from airflow.operators.python_operator import PythonOperator
from datetime import datetime, timedelta

default_args = {
'owner': 'airflow',
‘depends_on_past': False,
'start_date': datetime(2023, 1, 1),
'email_on_failure': False,
"email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=5),

}

dag = DAG(
"example_dag',
default_args=default_args,
description="'A simple DAG',
schedule_interval=timedelta(days=1),

)

def extract_data():
return [1, 2, 3]

def transform_data(data):
return [x * 2 for x in data]

def load_data(data):
client = SomeClient()
client.send_data(data)
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extract_task = PythonOperator(
task_id='extract_data',
python_callable=extract_data,
dag=dag,

)

transform_task = PythonOperator(
task_id="'transform_data',
python_callable=transform_data,
op_args=["'{{ ti.xcom_pull(task_ids="extract_data") }}'],
dag=dag,

)

load_task = PythonOperator(
task_id="'load_data',
python_callable=1o0ad_data,
op_args=["'{{ ti.xcom_pull(task_ids="transform_data") }}'I,
dag=dag,
)

extract_task >> transform_task >> load_task
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Meet-ups

We have an active global meetup group that meets virtually once a month.

You can sign up for the group here.

Past Meet-ups
The below will be out of date. Please see our youtube for the latest recordings on past meetups.
July 2025
- Topic: Apache Transition
December 2024

- Topic: Community spotlight by Jernej Frank on decorators framework

October 2024

- Topic: “Building a Decisioning Engine for Data Scientists” by Sholto Armstrong

August 2024

- Topic: “Finding Optimal DAGs for Machine Learning/Al/RAG projects” by Gilad Rubin

- Recording

June 2024

- Recording


https://www.meetup.com/global-hamilton-open-source-user-group-meetup/
https://www.youtube.com/@dagworks-inc
https://youtu.be/3LREcaewZbo?feature=shared
https://youtu.be/SsrIIM1ed4w?feature=shared
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April 2024

- Recording

March 2024

- Recording

February 2024

- Recording
- Slides

- Community Spotlight: Arthur Andres and slides


https://youtu.be/_-yXfnBtrlg?feature=shared
https://youtu.be/IJByeN41xHs?feature=shared
https://www.youtube.com/watch?v=ks672Lm0CJo
https://github.com/skrawcz/talks/files/14351139/Hamilton.February.2024.Meetup.pdf
https://www.linkedin.com/in/0x26res/
https://dagworks-inc.github.io/meetups/hamilton-02202024/arthur_tradewell.html#/
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Ecosystem

Welcome to the Apache Hamilton Ecosystem page! This page showcases the integrations, plugins,
and external resources available for Apache Hamilton users.

%’ Interactive Tutorials

tryhamilton.dev

Learn Apache Hamilton concepts through interactive, browser-based tutorials.

Built-in Integrations

Apache Hamilton provides first-class support for many popular data science and engineering tools
through built-in plugins and adapters. These integrations are maintained by the Apache Hamilton
community and included in the core project.

Data Frameworks

Apache Hamilton integrates seamlessly with popular data manipulation libraries:

Integration Description Documentation

pandas DataFrame operations and transformations Examples | ResultBuilder
Polars High-performance DataFrame library Examples | ResultBuilder
PySpark Distributed data processing with Spark Examples | GraphAdapter

Dask Parallel computing and distributed arrays Examples | GraphAdapter


https://www.tryhamilton.dev/
https://github.com/apache/hamilton/tree/main/examples/pandas
https://github.com/apache/hamilton/tree/main/examples/polars
https://github.com/apache/hamilton/tree/main/examples/spark
https://github.com/apache/hamilton/tree/main/examples/dask
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Integration  Description Documentation

Ray Distributed computing framework Examples | GraphAdapter
Ibis Portable DataFrame API across backends Integration Guide

Vaex Out-of-core DataFrame library Examples

Narwhals DataFrame-agnostic interface Examples | Lifecycle Hook
NumPy Numerical computing arrays ResultBuilder

PyArrow Columnar in-memory data ResultBuilder

Machine Learning & Data Science

Build and deploy ML workflows with Apache Hamilton:

Integration Description Documentation

MLflow Experiment tracking and model registry Examples | Lifecycle Hook
scikit-learn Machine learning algorithms Examples

XGBoost Gradient boosting framework 10 Adapters

LightGBM Gradient boosting framework 10 Adapters

Hugging Face Transformers and NLP models 10 Adapters

Pandera DataFrame validation Examples


https://github.com/apache/hamilton/tree/main/examples/ray
https://github.com/apache/hamilton/tree/main/examples/vaex
https://github.com/apache/hamilton/tree/main/examples/narwhals
https://github.com/apache/hamilton/tree/main/examples/mlflow
https://github.com/apache/hamilton/tree/main/examples/scikit-learn
https://github.com/apache/hamilton/tree/main/examples/data_quality/pandera
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Integration Description Documentation

Pydantic Data validation and settings Decorator

Orchestration & Workflow Systems

Use Apache Hamilton within your existing orchestration infrastructure:

Integration Description Documentation
Airflow Workflow orchestration platform Examples
Dagster Data orchestrator Examples
Prefect Workflow orchestration Examples

Kedro Data science pipelines Examples
Metaflow ML infrastructure Integration

dbt Data transformation tool Integration Guide

Data Engineering & ETL

Tools for building robust data pipelines:

Integration Description Documentation

dlit Data loading and transformation Integration Guide


https://github.com/apache/hamilton/tree/main/examples/airflow
https://github.com/apache/hamilton/tree/main/examples/dagster
https://github.com/apache/hamilton/tree/main/examples/prefect
https://github.com/apache/hamilton/tree/main/examples/kedro
https://github.com/outerbounds/hamilton-metaflow
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Integration

Feast

FastAPI

Streamlit

Description

Feature store

Web service framework

Interactive web applications

Observability & Monitoring

Track and monitor your Apache Hamilton dataflows:

Integration

Datadog

OpenTelemetry

OpenLineage

Hamilton Ul

Description

Monitoring and analytics

Observability framework

Data lineage tracking

Built-in execution tracking

Experiment Manager Lightweight experiment tracking

Visualization

Create visualizations from your dataflows:

Documentation

Examples

Integration Guide

Integration Guide

Documentation

Lifecycle Hook

Examples

Examples | Lifecycle Hook

Ul Guide

Examples


https://github.com/apache/hamilton/tree/main/examples/feast
https://github.com/apache/hamilton/tree/main/examples/opentelemetry
https://github.com/apache/hamilton/tree/main/examples/openlineage
https://github.com/apache/hamilton/tree/main/examples/experiment_management
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Integration Description

Plotly Interactive plotting

Matplotlib Static plotting

Rich Terminal formatting and progress

Developer Tools

Improve your development workflow:

Integration Description

Jupyter Notebook magic commands
VS Code Language server and extension
tqdm Progress bars

Cloud Providers & Infrastructure

Deploy Apache Hamilton to the cloud:

Integration Description
AWS Amazon Web Services
Google Cloud Google Cloud Platform

Ecosystem

Documentation

Examples

|0 Adapters

Lifecycle Hook

Documentation

Examples

VS Code Guide

Lifecycle Hook

Documentation

Examples

Scale-up Guide


https://github.com/apache/hamilton/tree/main/examples/plotly
https://github.com/apache/hamilton/tree/main/examples/jupyter_notebook_magic
https://github.com/apache/hamilton/tree/main/examples/aws
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Integration Description Documentation
Modal Serverless cloud functions Scale-up Guide

Storage & Caching

Persist and cache your data:

Integration Description Documentation
DiskCache Disk-based caching Examples
File-based caching Local file caching Caching Guide

Other Utilities

Integration  Description

Slack Notifications and integrations

GeoPandas  Geospatial data analysis

YAML Configuration management

Documentation

Examples | Lifecycle Hook

Type extension for GeoDataFrame support

|0 Adapters

External Resources

The following resources and services are provided by third parties and the broader Apache

Hamilton community.

1\ Important Notice:


https://github.com/apache/hamilton/tree/main/examples/caching_nodes/diskcache_adapter
https://github.com/apache/hamilton/tree/main/examples/slack
https://github.com/apache/hamilton/blob/main/hamilton/plugins/geopandas_extensions.py
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These resources and services are not maintained, nor endorsed by the Apache Hamilton
Community and Apache Hamilton project (maintained by the Committers and the Apache
Hamilton PMC). Use them at your sole discretion. The community does not verify the licenses nor
validity of these tools, so it's your responsibility to verify them.

Community Resources

= Dataflow Hub

hub.dagworks.io

A repository of reusable Apache Hamilton dataflows contributed by the community. Browse and
download pre-built dataflows for common use cases.

Note: It's WIP to move the domain to be under Apache. DAGWorks Inc., which donated Hamilton, is
not an operating entity anymore.

7/ Blog & Tutorials

blog.dagworks.io

Articles covering Apache Hamilton use cases, design patterns, reference architectures, and best
practices.

Note: It's WIP to move the contents to be under Apache. DAGWorks Inc., which donated Hamilton,
Is not an operating entity anymore.

2 Video Content
YouTube @DAGWorks-Inc

Video tutorials, talks, and meetup recordings about Apache Hamilton.

Note: It's WIP to move the contents to be under Apache. DAGWorks Inc., which donated Hamilton,
Is not an operating entity anymore.

Contributing to the Ecosystem

Adding a New Integration

If you've created a plugin or integration for Apache Hamilton, we'd love to include it in our
ecosystem!


https://hub.dagworks.io/docs/
https://blog.dagworks.io/
https://www.youtube.com/@DAGWorks-Inc
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For Built-in Integrations (maintained by the Apache Hamilton project):

1. Create a plugin in the hamilton/plugins/ directory

2. Add documentation and examples

3. Submit a pull request to the Apache Hamilton repository

4. Follow the contribution guidelines

For External Resources (maintained by third parties):

1. Submit a pull request to add your resource to this page under “External Resources”
2. Include a clear description and link

3. Ensure your resource is relevant to Apache Hamilton users

4. Your resource must be properly licensed and actively maintained

Support & Questions

- ¢ Slack Community - Real-time chat and community support
- %, GitHub Issues - Bug reports and feature requests
- Ll Documentation - Comprehensive guides and API reference

- VEJ Mailing List - Join the Apache Hamilton users mailing list for discussions and
announcements

o How to Subscribe: Send an empty email to users-subscribe@hamilton.apache.org. Use a
subject line like “subscribe” to avoid spam filters. Await a confirmation message and follow
the instructions to complete the process.

o How to Unsubscribe: Send an empty message to users-unsubscribe@hamilton.apache.org
from the same email address used to subscribe.

o How to Post: Once subscribed, post messages to users@hamilton.apache.org

o Archives: View past discussions

Stay Updated

Star us on GitHub


https://github.com/apache/hamilton
https://github.com/apache/hamilton/blob/main/CONTRIBUTING.md
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
https://github.com/apache/hamilton/issues
https://hamilton.apache.org
mailto:users-subscribe%40hamilton.apache.org
mailto:users-subscribe%40hamilton.apache.org
mailto:users-subscribe%40hamilton.apache.org
mailto:users-subscribe%40hamilton.apache.org
mailto:users-unsubscribe%40hamilton.apache.org
mailto:users-unsubscribe%40hamilton.apache.org
mailto:users-unsubscribe%40hamilton.apache.org
mailto:users-unsubscribe%40hamilton.apache.org
mailto:users%40hamilton.apache.org
mailto:users%40hamilton.apache.org
mailto:users%40hamilton.apache.org
mailto:users%40hamilton.apache.org
https://lists.apache.org/list.html?users@hamilton.apache.org
https://github.com/apache/hamilton
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- @ Follow @hamilton_os on Twitter/X

- VE{ Join the mailing lists for announcements


https://twitter.com/hamilton_os
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Decorators

Apache Hamilton implements several decorators to promote business-logic deduplication,
configuratibility, and add a layer of capabilities. These decorators can be found in the
hamilton.function_modifiers submodule GitHub.

Custom Decorators

If you have a use case for a custom decorator, tell us on Slack or via a GitHub issues. Knowing
about your use case and talking through help ensures we aren’t duplicating effort, and that it'll be
using part of the APl we don't intend to change.

Reference

check_output*

The @check_output decorator enables you to add simple data quality checks to your code.

For example:

import pandas as pd
import numpy as np
from hamilton.function_modifiers import check_output

acheck_output(
data_type=np.int64,
range=(0,100),

)

def some_int_data_between_0_and_100() -> pd.Series:
pass

The check_output validator takes in arguments that each correspond to one of the default
validators. These arguments tell it to add the default validator to the list. The above thus creates
two validators, one that checks the datatype of the series, and one that checks whether the data
is in a certain range.

Note that you can also specify custom decorators using the @check_output_custom decorator.


https://github.com/apache/hamilton/blob/main/hamilton/function_modifiers
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://github.com/apache/hamilton/issues/new?assignees=&labels=&projects=&template=feature_request.md&title=
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See data_quality for more information on available validators and how to build custom ones.

Note we also have a plugins that allow for validation with the pandera and pydantic libraries.
There are two ways to access these:

1. @check_output(schema=pandera_schema) Or @check_output(model=pydantic_model)

2. @h_pandera.check_output() or ah_pydantic.check_output() on the function that declares
either a typed dataframe or a pydantic model.

Reference Documentation

class hamilton.function_modifiers.check_output(importance: str = 'warn’,
default_validator_candidates: List[Type[BaseDefaultValidator]] = None, target_: str |
Collection[str] | None | EllipsisType = None, **default_validator_kwargs: Any)

The @check_output decorator enables you to add simple data quality checks to your code.

For example:

import pandas as pd
import numpy as np
from hamilton.function_modifiers import check_output

acheck_output(
data_type=np.int64,
data_in_range=(0,100),
importance="warn",

)

def some_int_data_between_0_and_100() -> pd.Series:

The check_output decorator takes in arguments that each correspond to one of the default
validators. These arguments tell it to add the default validator to the list. The above thus
creates two validators, one that checks the datatype of the series, and one that checks
whether the data is in a certain range.

Pandera example that shows how to use the check_output decorator with a Pandera

schema:

import pandas as pd

import pandera as pa

from hamilton.function_modifiers import check_output
from hamilton.function_modifiers import extract_columns

schema = pa.DataFrameSchema(...)

@extract_columns('coll', 'col2')


https://github.com/apache/hamilton/blob/main/data_quality.md
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ocheck_output(schema=schema, target_="builds_dataframe",
importance="fail")
def builds_dataframe(...) -> pd.DataFrame:

__init__(importance: str = 'warn’, default_validator_candidates:
List[Type[BaseDefaultValidator]] = None, target_: str | Collection[str] | None | EllipsisType =
None, **default_validator_kwargs: Any)

Creates the check_output validator.

This constructs the default validator class.

Note: that this creates a whole set of default validators. TODO - enable construction
of custom validators using check_output.custom(*validators).

Parameters:

- importance - For the default validator, how important
is it that this passes.

- default_validator_candidates — List of validators to be
considerred for this check.

- default_validator_kwargs - keyword arguments to be
passed to the validator.

- target_ - a target specifying which nodes to decorate.
See the docs in check_output_custom for a quick

overview and the docs in
function_modifiers.base.NodeTransformer for more
detail.

class hamilton.function_modifiers.check_output_custom(*validators: DataValidator, target_: str |
Collection[str] | None | EllipsisType = None)
Class to use if you want to implement your own custom validators.

Come chat to us in slack if you're interested in this!

__init__(*validators: DataValidator,

target_: str | Collection[str] | None | EllipsisType = None)
Creates a check_output_custom decorator. This allows passing of custom validators
that implement the DataValidator interface.

Parameters:

- validators - Validator to use.
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- target_ -

The nodes to check the output of. For more detail read
the docs in function_modifiers.base.NodeTransformer,
but your options are:

1. None: This will check just the “final node” (the
node that is returned by the decorated function).

2. ... (Ellipsis): This will check all nodes in the subDAG
created by this.

3.string: This will check the node with the given
name.

4. Collection[str]: This will check all nodes specified
in the list.

In all likelihood, you don’t want ..., but the others
are useful.

Note: you cannot stack @check_output_custom
decorators. If you want to use multiple custom
validators, you should pass them all in as arguments
to a single @check_output_custom decorator.

class hamilton.plugins.h_pandera.check_output(importance: str = 'warn’, target: str |
Collection[str] | None | EllipsisType = None)

__init__(importance: str = 'warn’, target: str | Collection[str] | None | EllipsisType = None)
Specific output-checker for pandera schemas. This decorator utilizes the output type
of the function, which has to be of type panderatyping.pandas.DataFrame or
pandera.typing.pandas.Series, with an annotation argument.

Parameters:

- schema - The schema to use for validation. If this is
not provided, then the output type of the function is
used.

- importance - Importance level (either “warn” or “fail”)
- see documentation for check_output for more
details.

-target - The target of the decorator - see
documentation for check_output for more details.
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Let's look at equivalent examples to demonstrate:

import pandera as pa

import pandas as pd

from hamilton.plugins import h_pandera
from pandera.typing.pandas import DataFrame

class MySchema(pa.DataFrameModel):

a: int

b: float

c: str = pa.Field(nullable=True) # For example, allow
None values

d: float # US dollars

@h_pandera.check_output()
def foo() -> DataFrame[MySchema]:
return pd.DataFrame() # will fail

from hamilton import function_modifiers

schema = pa.DataFrameSchema({
"a": pa.Column(pa.Int),
"b": pa.Column(pa.Float),
"c": pa.Column(pa.String, nullable=True),
"d": pa.Column(pa.Float),

b

@function_modifiers.check_output(schema=schema)
def foo() -> pd.DataFrame:
return pd.DataFrame() # will fail

These two are functionally equivalent. Note that we do not (yet) support modification
of the output.

class hamilton.plugins.h_pydantic.check_output(importance: str = 'warn’, target: str |
Collection[str] | None | EllipsisType = None)

__init__(importance: str = 'warn’, target: str | Collection[str] | None | EllipsisType = None)
Specific output-checker for pydantic models (requires pydantic>=2.0 ). This decorator
utilizes the output type of the function, which can be any subclass of
pydantic.BaseModel. The function output must be declared with a type hint.
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Parameters:

- model - The pydantic model to use for validation. If
this is not provided, then the output type of the
function is used.

- importance - Importance level (either “warn” or “fail”)
- see documentation for check_output for more
details.

-target - The target of the decorator - see
documentation for check_output for more details

Here is an example of how to use this decorator with a function that returns a
pydantic model:

from hamilton.plugins import h_pydantic
from pydantic import BaseModel

class MyModel(BaseModel):

a: int
b: float
c: str

oh_pydantic.check_output()
def foo() -> MyModel:
return MyModel(a=1, b=2.0, c="hello")

Alternatively, you can return a dictionary from the function (type checkers will
probably complain about this):

from hamilton.plugins import h_pydantic
from pydantic import BaseModel

class MyModel(BaseModel):

a: int
b: float
c: str

oh_pydantic.check_output()
def foo() -> MyModel:
return {"a": 1, "b": 2.0, "c": "hello"}

You can also use pydantic validation through function_modifiers.check_output by
providing the model as an argument:
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from typing import Any

from hamilton import function_modifiers
from pydantic import BaseModel

class MyModel(BaseModel):

a: int
b: float
c: str

afunction_modifiers.check_output(model=MyModel)
def foo() -> dict[str, Any]:
return {"a": 1, "b": 2.0, "c": "hello"}

Note, that because we do not (yet) support modification of the output, the validation
is performed in strict mode, meaning that no data coercion is performed. For
example, the following function will fail validation:

from hamilton.plugins import h_pydantic
from pydantic import BaseModel

class MyModel(BaseModel):
a: int # Defined as an int

oh_pydantic.check_output() # This will fail validation!

def foo() -> MyModel:
return MyModel(a="1") # Assigned as a string

For more information about strict mode see the pydantic docs: https://
docs.pydantic.dev/latest/concepts/strict_mode/

config.when*

@dconfig.when allows you to specify different implementations depending on configuration
parameters.

Note the following:

- The function cannot have the same name in the same file (or python gets unhappy), so we
name it with a __ (dunderscore) as a suffix. The dunderscore is removed before it goes into the
DAG.

- There is currently no @config.otherwise(...) decorator, so make sure to have config.when
specify set of configuration possibilities. Any missing cases will not have that output column


https://docs.pydantic.dev/latest/concepts/strict_mode/
https://docs.pydantic.dev/latest/concepts/strict_mode/
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(and subsequent downstream nodes may error out if they ask for it). To make this easier, we
have a few more @config decorators:

o @config.when_not(param=value) Will be included if the parameter is _not_ equal to the
value specified.

° @config.when_in(param=[valuel, value2, ...]) Will be included if the parameter is equal
to one of the specified values.

° @config.when_not_in(param=[valuel, value2, ...]) Will be included if the parameter is
not equal to any of the specified values.

o @config If you're feeling adventurous, you can pass in a lambda function that takes in the
entire configuration and resolves to True or False.You probably don't want to do this.

- To always exclude a function (such as helper functions) from the DAG the most straightforward

uon

and preferred pattern is to prefix it with “.”, but you can also use @hamilton_exclude .

Reference Documentation

class hamilton.function_modifiers.config(resolves: Callable[[Dict[str, Any]], bool], target_name: str
= None, config_used: List[str] = None)
Decorator class that determines whether a function should be in the DAG based on some
configuration variable.

Notes:
1. Currently, functions that exist in all configurations have to be disjoint.

2.There is currently no @config.otherwise(...) decorator, so make sure to have
config.when specify set of configuration possibilities. Any missing cases will not have
that output (and subsequent downstream functions may error out if they ask for it).

3. To make this easier, we have a few more aconfig decorators:
o @config.when_not(param=value) Will be included if the parameter is _not_
equal to the value specified.

o @config.when_in(param=[valuel, value2, ...1) Will be included if the
parameter is equal to one of the specified values.

o @config.when_not_in(param=[valuel, value2, ...]) Will be included if the
parameter is not equal to any of the specified values.

o @config If you're feeling adventurous, you can pass in a lambda function that
takes in the entire configuration and resolves to True or False. You probably
don't want to do this.

Example:
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aconfig.when_in(business_line=["mens","kids"], region=["uk"])
def LEAD_LOG_BASS_MODEL_TIMES_TREND(
TREND_BSTS_WOMENS_ACQUISITIONS: pd.Series,
LEAD_LOG_BASS_MODEL_SIGNUPS_NON_REFERRAL: pd.Series) ->
pd.Series:
# logic

Example - use of __suffix to differentiate between functions with the same name. This is
required if you want to use the same function name in multiple configurations. Hamilton
will automatically drop the suffix for you. The following will ensure only one function is
registered with the name my_transform:

aconfig.when(region="us"
def my_transform__us(some_input: pd.Series, some_input_b:
pd.Series) -> pd.Series:

# logic

aconfig.when(region="uk")
def my_transform__uk(some_input: pd.Series, some_input_c:
pd.Series) -> pd.Series:

# logic

aconfig If you're feeling adventurous, you can pass in a lambda function that takes in the
entire configuration and resolves to True or False.You probably don’t want to do this.

__init__(resolves: Callable[[Dict[str, Any]], bool], target_name: str = None, config_used:
List[str] = None)
Decorator that resolves a function based on the configuration...

Parameters:

-resolves — the python function to use to resolve
whether the wrapped function should exist in the
graph or not.

- target_name - Optional. The name of the
“function”/"node” that we want to attach @config to.

- config_used - Optional. The list of config names that
this function uses.

class hamilton.function_modifiers.configuration.hamilton_exclude
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Decorator class that excludes a function from the DAG.

The preferred way to hide functions from the Hamilton DAG is to prefix them with “".
However, for the exceptional case, it can be useful for decorating helper functions without
the need to prefix them with “" and use them either inside other nodes or in conjunction

with step or apply_to.

ahamilton_exclude
def helper(...) -> ...:
""'This will not be part of the DAG'"'

You may also want to use this decorator for excluding functions in legacy code that would
raise and error in Hamilton (for example missing type hints).

dataloader

Reference Documentation

class hamilton.function_modifiers.dataloader
Decorator for specifying a data loading function within the Hamilton framework. This
decorator is used to annotate functions that load data, allowing them to be treated
specially in the Hamilton DAG (Directed Acyclic Graph). The decorated function should
return a tuple containing the loaded data and a dictionary of metadata about the loading
process.

The dataloader decorator captures loading data metadata and ensures the function’s return
type is correctly annotated to be a tuple, where the first element is the loaded data and the
second element is a dictionary containing metadata about the data loading process.

Downstream functions need only to depend on the type of data loaded.

Example Usage:
Assuming you have a function that loads data from a JSON file and you want to expose the
metadata in your Hamilton DAG to be captured in the Hamilton Ul / adapters:

import pandas as pd
from hamilton.function_modifiers import dataloader

adataloader() # you need ()
def load_json_data(json_path: str = "data/my_data.json") ->
tuple[pd.DataFrame, dict]:
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'"''"Loads a dataframe from a JSON file.

:return: A tuple containing two dictionaries:
- The first dictionary contains the loaded JSON data as a
dataframe
- The second dictionary contains metadata about the
loading process.

# Load the data
data = pd.read_json(json_path)

# Metadata about the loading process
metadata = {"source": json_path, "format": "json"}

return data, metadata

generate_nodes(fn: Callable, config) - List[Node]
Generates two nodes. We have to add tags appropriately.

The first one is just the fn - with a slightly different name. The second one uses the
proper function name, but only returns the first part of the tuple that the first returns.

Parameters:
-fn

- config

Returns:

validate(fn: Callable)
Validates that the output type is correctly annotated.

datasaver

Reference Documentation

class hamilton.function_modifiers.datasaver
Decorator for specifying a data saving function within the Hamilton framework. This
decorator is used to annotate functions that save data, allowing them to be treated
specially in the Hamilton DAG (Directed Acyclic Graph). The decorated function should
return a dictionary containing metadata about the saving process.
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The datasaver decorator captures saving data metadata and ensures the function’s return
type is correctly annotated to be a dictionary, where the dictionary contains metadata about
the data saving process, that then is exposed / captures for the Hamilton Ul / adapters.

Example Usage:

Assuming you have a function that saves data to a JSON file and you want to expose the
metadata in your Hamilton DAG to be captured in the Hamilton Ul / adapters:

import pandas as pd
from hamilton.function_modifiers import datasaver

adatasaver() # you need ()
def save_json_data(data: pd.DataFrame, json_path: str = "data/
my_saved_data.json") -> dict:

"''Saves data to a JSON file and returns metadata about the
saving process.

:param data: The data to save.
:param json_path: The path to save the data to.
:return: metadata about what was saved.

# Save the data
with open(json_path, "w") as file:
data.to_json(json_path)

# Metadata about the saving process
metadata = {"destination": json_path, "format": "json"}

return metadata

This function can now be used within the Hamilton framework as a node that saves data to
a JSON file. The metadata returned alongside the data can be used for logging, debugging,
or any other purpose that requires information about the data saving process as it can be
pulled out by the Hamilton Tracker for the Hamilton Ul or other adapters.

generate_nodes(fn: Callable, config) - List[Node]
Generates same node but all this does is add tags to it. :param fn: :param
config: :return:

validate(fn: Callable)
Validates that the function output is a dict type.
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does

@does is a decorator that essentially allows you to run a function over all the input parameters.
So you can’t pass any old function to adoes , instead the function passed has to take any amount
of inputs and process them all in the same way.

import pandas as pd
from hamilton.function_modifiers import does
import internal_package_with_logic

def sum_series(**series: pd.Series) -> pd.Series:
"""This function takes any number of inputs and sums them all
together."""

adoes(sum_series)
def D_XMAS_GC_WEIGHTED_BY_DAY(D_XMAS_GC_WEIGHTED_ BY DAY _1: pd.Series,
D_XMAS_GC_WEIGHTED_BY DAY 2:
pd.Series) -> pd.Series:
"""Adds D_XMAS_GC_WEIGHTED_BY DAY 1 and
D_XMAS_GC_WEIGHTED BY DAY 2"""
pass

@does(internal_package_with_logic.identity_function)
def copy_of_x(x: pd.Series) -> pd.Series:
"""Just returns x
pass

The example here is a function, that all that it does, is sum all the parameters together. So we can
annotate it with the @does decorator and pass it the sum_series function. The @does decorator
is currently limited to just allow functions that consist only of one argument, a generic **kwargs.

Reference Documentation

class hamilton.function_modifiers.does(replacing_function: Callable, **argument_mapping: str |
List[str])
@does is a decorator that essentially allows you to run a function over all the input
parameters. So you can't pass any old function to @does, instead the function passed has
to take any amount of inputs and process them all in the same way.

import pandas as pd
from hamilton.function_modifiers import does
import internal_package_with_logic

def sum_series(**series: pd.Series) -> pd.Series:
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"'"'This function takes any number of inputs and sums them all
together."'""'

adoes(sum_series)
def D_XMAS_GC_WEIGHTED_BY_DAY(D_XMAS_GC_WEIGHTED_BY_DAY_ 1:

pd.Series,
D_XMAS_GC_WEIGHTED_BY_ DAY 2:
pd.Series) -> pd.Series:
‘' 'Adds D_XMAS_GC_WEIGHTED_BY DAY 1 and
D_XMAS_GC_WEIGHTED BY DAY 2'''
pass

adoes(internal_package_with_logic.identity_function)
def copy_of_x(x: pd.Series) -> pd.Series:

"'*'"Just returns x'''

pass

The example here is a function, that all that it does, is sum all the parameters together. So
we can annotate it with the @does decorator and pass it the sum_series function. The
adoes decorator is currently limited to just allow functions that consist only of one
argument, a generic **kwargs.

__init__(replacing_function: Callable, **argument_mapping: str | List[str])
Constructor for a modifier that replaces the annotated functions functionality with
something else. Right now this has a very strict validation requirements to make
compliance with the framework easy.

Parameters:

- replacing_function - The function to replace the
original function with.

- argument_mapping - A mapping of argument name in
the replacing function to argument name in the
decorating function.

unpack_fields

This decorator works on a function that outputs a tuple and unpacks its elements to make them
individually available for consumption. Essentially, it expands the original function into n separate
functions, each of which takes the original output tuple and, in return, outputs a specific field
based on the index supplied to the unpack_fields decorator.
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import pandas as pd
from hamilton.function_modifiers import unpack_fields

aunpack_fields('X_train', 'X_test', 'y_train', 'y_test')
def train_test_split_func(

feature_matrix: np.ndarray,

target: np.ndarray,

test _size fraction: float,

shuffle_train_test_split: bool,
) -> Tuplel[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:

# Calculate the train-test split
return X_train, X_test, y_train, y_test

The arguments to the decorator not only represent the names of the resulting fields but also
determine their position in the output tuple. This means you can choose to unpack a subset of
the fields or declare an indeterminate number of fields — as long as the number of requested
fields does not exceed the number of elements in the output tuple.

import pandas as pd
from hamilton.function_modifiers import unpack_fields

aunpack_fields('X_train', 'X_test', 'y_train', 'y_test')
def train_test_split_func(
feature_matrix: np.ndarray,
target: np.ndarray,
test_size fraction: float,
shuffle_train_test_split: bool,
) -> Tuple[np.ndarray, ...]: # indeterminate number of fields
# Calculate the train-test split
return X_train, X_test, y_train, y_test

Reference Documentation

class hamilton.function_modifiers.unpack_fields(*fields: str)
Unpacks fields from a tuple output.

Expands a single function into the following nodes:
- 1 function that outputs the original tuple
- n functions, each of which take in the original tuple and output a specific field

The decorated function must have an return type of either tuple (python 3.9+) or
typing.Tuple, and must specify either: - An explicit length tuple (e.g’tuplelint, str],
typing.Tuple[int, str]) - An indeterminate length tuple (e.g. tuple[int, ...], typing.Tuple[int, ...])
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Parameters:

fields - Fields to unpack from the return value of the
decorated function.

__init__(*fields: str)
Initializes the node transformer to only allow a single node to be transformed. Note
this passes target=None to the superclass, which means that it will only apply to the
‘sink’ nodes produced.

extract_columns

This works on a function that outputs a dataframe, that we want to extract the columns from and
make them individually available for consumption. So it expands a single function into n
functions, each of which take in the output dataframe and output a specific column as named in
the extract_columns decorator.

import pandas as pd
from hamilton.function_modifiers import extract_columns

dextract_columns('fiscal _date', 'fiscal_week _name', 'fiscal _month',
'fiscal_quarter', 'fiscal_year')
def fiscal_columns(date_index: pd.Series, fiscal_dates:
pd.DataFrame) -> pd.DataFrame:

"""Extracts the fiscal column data.

We want to ensure that it has the same spine as date_index.

:param fiscal_dates: the input dataframe to extract.

:return:

df = pd.DataFrame({'date_index': date_index},
index=date_index.index)

merged = df.join(fiscal_dates, how='inner')

return merged

Note: if you have a list of columns to extract, then when you call @extract_columns you should
call it with an asterisk like this:

import pandas as pd
from hamilton.function_modifiers import extract_columns

oextract_columns(*my_list_of_column_names)
def my_func(...) -> pd.DataFrame:
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Reference Documentation

class hamilton.function_modifiers.extract_columns(*columns: Tuple[str, str] | str, fill_with: Any =
None)
__init__(*columns: Tuple[str, str] | str, fill_with: Any = None)
Constructor for a modifier that expands a single function into the following nodes:

- n functions, each of which take in the original dataframe and output a specific
column

- 1 function that outputs the original dataframe

Parameters:

- columns - Columns to extract, that can be a list of
tuples of (name, documentation) or just names.

- fill_with - If you want to extract a column that doesn’t
exist, do you want to fill it with a default value? Or do
you want to error out? Leave empty/None to error out,
set fill_value to dynamically create a column.

extract_fields

This works on a function that outputs a dictionary, that we want to extract the fields from and
make them individually available for consumption. So it expands a single function into n
functions, each of which take in the output dictionary and output a specific field as named in the
extract_fields decorator.

import pandas as pd
from hamilton.function_modifiers import extract_columns

afunction_modifiers.extract fields(
{'X_train': np.ndarray, 'X_test': np.ndarray, 'y_train':

np.ndarray, 'y_test': np.ndarray})

def train_test_split_func(feature_matrix: np.ndarray,
target: np.ndarray,
test_size_fraction: float,
shuffle_train_test_split: bool) ->

Dict[str, np.ndarray]:

return {'X _train': ... }
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The input to the decorator is a dictionary of field_name to field_type - this information is used
for static compilation to ensure downstream uses are expecting the right type.

Reference Documentation

class hamilton.function_modifiers.extract_fields(fields: Dict[str, Any] | List[str] | Any | None =
None, *others, fill_with: Any = None)
Extracts fields from a dictionary of output.

__init__(fields: Dict[str, Any] | List[str] | Any | None = None, *others, fill_with: Any = None)
Constructor for a modifier that expands a single function into the following nodes:

- n functions, each of which take in the original dict and output a specific field

- 1 function that outputs the original dict

Parameters:

- fields - Fields to extract. Can be a dict of field names
to types, a list of field names, or a single field name.

- others - Additional fields names to extract - argument
unpacking. Ignored if fields is a dict.

- fill_with - If you want to extract a field that doesn't
exist, do you want to fill it with a default value? Or do
you want to error out? Leave empty/None to error out,
set fill_value to dynamically create a field value.

inject

Reference Documentation

class hamilton.function_modifiers.inject(**key_mapping: ParametrizedDependency)
@inject allows you to replace parameters with values passed in. You can think of it as a
@parameterize call that has only one parameterization, the result of which is the name of
the function. See the following examples:

import pandas as pd
from function_modifiers import inject, source, value, group

oinject(nums=group(source('a'), value(10), source('b'),
value(2)))
def a_plus_10_plus_b_plus_2(nums: List[int]) -> int:
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return sum(nums)
This would be equivalent to:

oparameterize(
a_plus_10_plus_b_plus_2=9
"nums': group(source('a'), value(10), source('b'),
value(2))
1)

def sum_numbers(nums: List[int]) -> int:
return sum(nums)

Something to note — we currently do not support the case in which the same parameter is
utilized multiple times as an injection. E.G. two lists, a list and a dict, two sources, etc...

This is considered undefined behavior, and should be avoided.

__init__(**key_mapping: ParametrizedDependency)
Instantiates an @inject decorator with the given key_mapping.

Parameters:

key_mapping - A dictionary of string to dependency
spec. This is the same as the input mapping in
@parameterize.

load_from

Reference Documentation

class hamilton.function_modifiers.load_from
Decorator to inject externally loaded data into a function. Ideally, anything that is not a pure
transform should either call this, or accept inputs from an external location.

This decorator functions by “injecting” a parameter into the function. For example, the
following code will load the json file, and inject it into the function as the parameter
input_data. Note that the path for the JSON file comes from another node called
raw_data_path (which could also be passed in as an external input).

@load_from. json(path=source("raw_data_path"))
def raw_data(input_data: dict) -> dict:
return input_data
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The decorator can also be used with value to inject a constant value into the loader. In the
following case, we use the literal value “some/path.json” as the path to the JSON file.

@load_from. json(path=value("some/path.json"))
def raw_data(input_data: dict) -> dict:
return input_data

Note that, if neither source nor value is specified, the value will be passed in as a literal
value.

aload_from. json(path="some/path.json")
def raw_data(input_data: dict) -> dict:
return input_data

You can also utilize the inject_ parameter in the loader if you want to inject the data into a
specific param. For example, the following code will load the json file, and inject it into the
function as the parameter data.

@load_from. json(path=source("raw_data_path"), inject_="data")
def raw_data(data: dict, valid_keys: List[str]) -> dict:
return [item for item in data if item in valid_keys]

You can also utilize multiple data loaders with separate inject_ parameters to load from
multiple files. data loaders to a single function:

oload_from. json(path=source("raw_data_path"), inject_="data")
@load_from. json(path=source("raw_data_path2"), inject_="data2")
def raw_data(data: dict, data2: dict) -> dict:

return [item for item in data if item in data2]

This is a highly pluggable functionality — here’s the basics of how it works:

1. Every “key” (json above, but others include csvy, literal, file, pickle, etc...) corresponds to a
set of loader classes. For example, the json key corresponds to the JSONLoader class in
default_data_loaders. They implement the classmethod name. Once they are registered with
the central registry they pick

2. Every data loader class (which are all dataclasses) implements the load_targets method,
which returns a list of types it can load to. For example, the JSONLoader class can load data
of type dict. Note that the set of potential loading candidate classes are evaluated in
reverse order, so the most recently registered loader class is the one that is used. That way,
you can register custom ones.
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3. The loader class is instantiated with the kwargs passed to the decorator. For example, the
JSONLoader class takes a path kwarg, which is the path to the JSON file.

4. The decorator then creates a node that loads the data, and modifies the node that runs
the function to accept that. It also returns metadata (customizable at the loader-class-level)
to enable debugging after the fact. This is unstructured, but can be used down the line to
describe any metadata to help debug.

The “core” hamilton library contains a few basic data loaders that can be implemented
within the confines of python’s standard library. pandas_extensions contains a few more
that require pandas to be installed.

Note that these can have default arguments, specified by defaults in the dataclass fields.
For the full set of “keys” and “types” (e.g. load_from.json, etc..), look for all classes that
inherit from Dataloader in the hamilton library. We plan to improve documentation shortly
to make this discoverable.

__init__()

parameterize

Expands a single function into n, each of which correspond to a function in which the parameter
value is replaced either by:

1. A specified value value()

2. The value from a specified upstream node source() .

Note if you're confused by the other @paramterize_* decorators, don't worry, they all delegate to
this base decorator.

import pandas as pd
from hamilton.function_modifiers import parameterize
from hamilton.function_modifiers import value, source

aparameterize(

D ELECTION 2016 _shifted=dict(n_off_date=source('D_ELECTION 2016'),
shift_by=value(3)),

SOME_OUTPUT_NAME=dict(n_off_date=source('SOME_INPUT_NAME'),

shift_by=value(1)),

)

def date_shifter(n_off_date: pd.Series, shift_by: int = 1) ->
pd.Series:
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{one_off_date} shifted by shift_by to create {output_name}
return n_off_date.shift(shift_by)

By choosing value() or source(), you can determine the source of your dependency. Note that
you can also pass documentation. If you don't, it will use the parameterized docstring.

oparameterize(

D_ELECTION_2016_shifted=(dict(n_off_date=source('D_ELECTION_2016'),
shift_by=value(3)), "D_ELECTION_2016 shifted by 3"),
SOME_OUTPUT_NAME=(dict(n_off_date=source('SOME_INPUT NAME'),
shift_by=value(1)),"SOME_INPUT_NAME shifted by 1")
)
def date_shifter(n_off_date: pd.Series, shift_by: int=1) ->
pd.Series:
"""{one_off_date} shifted by shift_by to create {output_name}
return n_off_date.shift(shift_by)

Reference Documentation
Classes to help with @parameterize (also can be used with @inject):

class hamilton.function_modifiers.ParameterizedExtract(outputs: Tuple[str, ...], input_mapping:
Dict[str, ParametrizedDependency])
Dataclass to hold inputs for @parameterize and @parameterize_extract_columns.

Parameters:

- outputs - A tuple of strings, each of which is the name of
an output.

-input_mapping - A dictionary of string to
ParametrizedDependency. The string is the name of the
python parameter of the decorated function, and the
value is a “source”/"value” which will be passed as input
for that parameter to the function.

class hamilton.function_modifiers.source(dependency_on: Any)
Specifies that a parameterized dependency comes from an upstream source.

This means that it comes from a node somewhere else. E.G. source(“foo”) means that it
should be assigned the value that “foo” outputs.

Parameters:
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dependency_on - Upstream function (i.e. node) to come
from.
Returns:

An UpstreamDependency object - a signifier to the internal
framework of the dependency type.

class hamilton.function_modifiers.value(literal_value: Any)
Specifies that a parameterized dependency comes from a “literal” source.

E.G. value(“foo”) means that the value is actually the string value “foo”.

Parameters:

literal_value - Python literal value to use.

Returns:

A LiteralDependency object - a signifier to the internal
framework of the dependency type.

class hamilton.function_modifiers.group(*dependency_args: ParametrizedDependency,
**dependency_Rwargs: ParametrizedDependency)
Specifies that a parameterized dependency comes from a “grouped” source.

This means that it gets injected into a list of dependencies that are grouped together. E.G.
dep=group(source(“foo”), source(“bar”)) for the function:

dinject(dep=group(source("foo"), source("bar")))
def f(dep: List[pd.Series]) -> pd.Series:
return ...

Would result in dep getting foo and bar dependencies injected.

Parameters:

- dependency_args - Dependencies, list of dependencies
(e.g. source(“foo”), source(“bar”))

- dependency_kwargs - Dependencies, kwarg
dependencies (e.g. foo=source(“foo”))
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Returns:

Parameterize documentation:

class hamilton.function_modifiers.parameterize(**parametrization: Dict[str,
ParametrizedDependencyl] | Tuple[Dict[str, ParametrizedDependency], str])
Decorator to use to create many functions.

Expands a single function into n, each of which correspond to a function in which the
parameter value is replaced either by:

1. A specified literal value, denoted value('literal_value’).

2.The output from a specified upstream function (i.e. node), denoted
source(‘upstream_function_name’).

Note that parameterize can take the place of @parameterize_sources Or
@parameterize_values decorators below. In fact, they delegate to this!

Examples expressing different syntax:

oparameterize(

# tuple of assignments (consisting of literals/upstream
specifications), and docstring.

replace_no_parameters=({}, 'fn with no parameters replaced'),
)

def no_param_function() -> Any:

aparameterize(
# tuple of assignments (consisting of literals/upstream
specifications), and docstring.
replace_just_upstream_parameter=(
{'upstream_source': source('foo_source')},
"fn with upstream_parameter set to node foo'
)
)
def param_is_upstream_function(upstream_source: Any) -> Any:
""'Doc string that can also be parameterized:
{upstream_source}."'""

oparameterize(
replace_just_literal_parameter={'literal_parameter':

value('bar')},

)

def param_is_literal_value(literal_parameter: Any) -> Any:
""'Doc string that can also be parameterized:
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{literal_parameter}.'"'

oparameterize(
replace_both_parameters={
'upstream_parameter': source('foo_source'),

'literal_parameter': value('bar')
}
)
def concat(upstream_parameter: Any, literal_parameter: str) ->

Any:
"''Adding {literal_parameter} to {upstream_parameter} to

create {output_name}.'"'
return upstream_parameter + literal_parameter

You also have the capability to “group” parameters, which will combine them into a list.

oparameterize(
a_plus_b_plus_c={
"to_concat' : group(source('a'), value('b'), source('c'))
}
)

def concat(to_concat: List[str]) -> Any:
'''Adding {literal_parameter} to {upstream_parameter} to

create {output_name}.'"'
return sum(to_concat, '')

_init__(**parametrization: Dict[str, ParametrizedDependency] | Tuple[Dict[str,

ParametrizedDependency], str])
Decorator to use to create many functions.

Parameters:
parametrization -
**kwargs with one of two things:

-a tuple of assignments (consisting of literals/
upstream specifications), and docstring.

- just assignments, in which case it parametrizes the
existing docstring.
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parameterize_extract_columns

Reference Documentation

class hamilton.function_modifiers.parameterize_extract_columns(*extract_config:
ParameterizedExtract, reassign_columns: bool = True)
@parameterize_extract_columns gives you the power of both @extract_columns and
@parameterize in one decorator.

It takes in a list of Parameterized_Extract objects, each of which is composed of: 1. A list of
columns to extract, and 2. A parameterization that gets used

In the following case, we produce four columns, two for each parameterization:

import pandas as pd
from function_modifiers import parameterize_extract_columns,
ParameterizedExtract, source, value
oparameterize_extract_columns(
ParameterizedExtract(
("outseriesla", "outseries2a"),
{"input1": source("inseriesla"), "input2":
source("inseries1b"), "input3": value(10)},
b
ParameterizedExtract(
("outserieslb", "outseries2b"),
{"input1": source("inseries2a"), "input2":
source("inseries2b"), "input3": value(100)},

)
)

def fn(inputl: pd.Series, input2: pd.Series, input3: float) ->
pd.DataFrame:

return pd.concat([inputl * input2 % input3, inputl + input2
+ input3], axis=1)

__init__(*extract_config: ParameterizedExtract, reassign_columns: bool = True)
Initializes a parameterized_extract decorator. Note this currently works for series, but
the plan is to extend it to fields as well...

Parameters:

- extract_config - A configuration consisting of a list

ParameterizedExtract classes These contain the
information of a @parameterized and @extract...
together.
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- reassign_columns - Whether we want to reassign the
columns as part of the function.

parameterize_frame

Reference Documentation

class
hamilton.experimental.decorators.parameterize_frame.parameterize_frame(parameterization:
DataFrame)
EXPERIMENTAL! Instantiates a parameterize_extract decorator using a dataframe to specify a
set of extracts + parameterizations.

This is an experimental decorator and the APl may change in the future; please provide
feedback whether this API does or does not work for you.

Parameters:

parameterization - Parameterization dataframe. See below.

This is of a specific shape:
1. Index - Level 0: list of parameter names
2. Index - Level 1: types of things to inject, either:
o “out” (meaning this is an output),
o “value” (meaning this is a literal value)
o “source” (meaning this node comes from an upstream value)
3. Contents:

- Each row corresponds to the index. Each of these corresponds to
an output node from this.

Note your function has to take in the column-names and output a dataframe with those
names — we will likely change it so that's not the case, and it can just use the position of the
columns.

Example usage:
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from hamilton.experimental.decorators.parameterize_frame import
parameterize_frame
df = pd.DataFrame(

[

["outseriesla", "outseries2a", "inseriesla", "inseries2a",
5.0],

["outserieslb", "outseries2b", "inseriesilb", "inseries2b",
0.21,

1,
# specify column names corresponding to function arguments and
# if outputting multiple columns, output dataframe columns.
columns=[
["outputl", "output2", "inputl", "input2", "input3"],
["out", "out", "source", "source", "value"],

D

oparameterize_frame(df)
def my_func(

inputl: pd.Series, input2: pd.Series, input3: float
) -> pd.DataFrame:

__init__(parameterization: DataFrame)
Initializes a parameterized_extract decorator. Note this currently works for series, but
the plan is to extend it to fields as well...

Parameters:

- extract_config - A configuration consisting of a list

ParameterizedExtract classes These contain the
information of a @parameterized and @extract...
together.

- reassign_columns - Whether we want to reassign the
columns as part of the function.

paramete rize_sources

Expands a single function into n, each of which corresponds to a function in which the parameters
specified are mapped to the specified inputs. Note this decorator and @parameterize_values are
quite similar, except that the input here is another DAG node(s), i.e. column/input, rather than a
specific scalar/static value.
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import pandas as pd
from hamilton.function_modifiers import parameterize_sources

oparameterize_sources(
D_ELECTION_2016_shifted=dict(one_off_date='D_ELECTION_2016"'),
SOME_OUTPUT_NAME=dict(one_off_date='SOME_INPUT_NAME")

)

def date_shifter(one_off_date: pd.Series) -> pd.Series:
"""{one_off_date} shifted by 1 to create {output_name}
return one _off_date.shift(1)

We see here that parameterize_sources allows you to keep your code DRY by reusing the same
function to create multiple distinct outputs. The key word arguments passed have to have the
following structure:

OUTPUT_NAME = Mapping of function argument to input that should go
into it.

So in the example, D_ELECTION_2016_shifted is an _output_ that will correspond to replacing
one_off_date with D_ELECTION_2016 . Then similarly SOME_OUTPUT_NAME is an _output_ that will
correspond to replacing one_off_date with SOME_INPUT_NAME . The documentation for both uses
the same function doc and will replace values that are templatized with the input parameter
names, and the reserved value output_name .

To help visualize what the above is doing, it is equivalent to writing the following two function
definitions:

def D_ELECTION_2016_shifted(D_ELECTION_2016: pd.Series) -> pd.Series:
"""D _ELECTION_2016 shifted by 1 to create

D ELECTION 2016 shifted"""
return D_ELECTION 2016.shift(1)

def SOME_OUTPUT_NAME(SOME_INPUT_NAME: pd.Series) -> pd.Series:
"""SOME_INPUT_NAME shifted by 1 to create SOME_OUTPUT_NAME"""
return SOME_INPUT_NAME.shift(1)

Note: that the different input variables must all have compatible types with the original decorated
input variable.

Reference Documentation

class hamilton.function_modifiers.parameterize_sources(**parameterization: Dict[str, str])
Expands a single function into n, each of which corresponds to a function in which the
parameters specified are mapped to the specified inputs. Note this decorator and
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@parameterize_values are quite similar, except that the input here is another DAG node(s),
i.e. column/input, rather than a specific scalar/static value.

import pandas as pd
from hamilton.function_modifiers import parameterize_sources

oparameterize_sources(
D_ELECTION 2016 _shifted=dict(one_off_date='D_ELECTION 2016"'),
SOME_OUTPUT_NAME=dict(one_off_date='SOME_INPUT NAME')

)

def date_shifter(one_off_date: pd.Series) -> pd.Series:
"''{one_off_date} shifted by 1 to create {output_name}'"'
return one_off_date.shift(1)

__init__(**parameterization: Dict[str, str])
Constructor for a modifier that expands a single function into n, each of which
corresponds to replacing some subset of the specified parameters with specific
upstream nodes.

Note this decorator and @parametrized_input are similar, except this one allows
multiple parameters to be mapped to multiple function arguments (and it fixes the
spelling mistake).

parameterized_sources allows you keep your code DRY by reusing the same function
but replace the inputs to create multiple corresponding distinct outputs. We see
here that parameterized_inputs allows you to keep your code DRY by reusing the
same function to create multiple distinct outputs. The key word arguments passed
have to have the following structure:

> OUTPUT_NAME = Mapping of function argument to input that should go into it.

The documentation for the output is taken from the function. The documentation
string can be templatized with the parameter names of the function and the reserved
value output_name - those will be replaced with the corresponding values from the
parameterization.

Parameters:

**parameterization - kwargs of output name to dict of
parameter mappings.

Note: this was previously called @parameterized_inputs.



350 Decorators

parameterized_subdag

Reference Documentation

class hamilton.function_modifiers.parameterized_subdag(*load_from: ModuleType | Callable,
inputs: Dict[str, ParametrizedDependency | LiteralDependency] = None, config: Dict[str, Any] =
None, external_inputs: List[str] = None, **parameterization: SubdagParams)
parameterized subdag is when you want to create multiple subdags at one time. Why might
you want to do this?

1. You have multiple data sets you want to run the same feature engineering pipeline on.
2. You want to run some sort of optimization routine with a variety of results

3. You want to run some sort of pipeline over slightly different configuration (E.G. region/
business line)

Note that this really is just syntactic sugar for creating multiple subdags, just as
@parameterize is syntactic sugar for creating multiple nodes from a function. That said, it is
common that you won't know what you want until compile time (E.G. when you have the
config available), so this decorator along with the “@resolve decorator is a good way to
make that feasible. Note that we are getting into advanced Hamilton here - we don't
recommend starting with this. In fact, we generally recommend repeating subdags multiple
times if you don’t have too many. That said, that can get cumbersome if you have a lot, so
this decorator is a good way to help with that.

Let's take a look at an example:

oparameterized_subdag(
feature_modules,
from_datasource_1={"inputs" : {"data"
value("datasource_1.csv")}},
from_datasource_2={"inputs" : {"data"
value("datasource_2.csv")}},
from_datasource 3={
"inputs" : {"data" : value("datasource_3.csv")},
"config" : {"filter" : "only_even_client_ids"}
}
)

def feature_engineering(feature_df: pd.DataFrame) ->
pd.DataFrame:
return feature_df

This is (obviously) contrived, but what it does is create three subdags, each with a different
data source. The third one also applies a configuration to that subdags. Note that we can
also pass in inputs/config to the decorator itself, which will be applied to all subdags.
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This is effectively the same as the example above.

aparameterized_subdag(
feature_modules,
inputs={"data" : value("datasource_1.csv")},
from_datasource_1={},
from_datasource 2={

"inputs" : {"data" : value("datasource_2.csv")}
b,
from_datasource 3={

"inputs" : {"data" : value("datasource_3.csv")},

"config" : {"filter" : "only_even_client_ids"},
}

Again, think about whether this feature is really the one you want — often times, verbose,
static DAGs are far more readable than very concise, highly parameterized DAGs.

__init__(*load_from: ModuleType | Callable, inputs: Dict[str, ParametrizedDependency |
LiteralDependency] = None, config: Dict[str, Any] = None, external_inputs: List[str] = None,
**parameterization: SubdagParams)

Initializes a parameterized_subdag decorator.

Parameters:
- load_from - Modules to load from

-inputs - Inputs for each subdag generated by the
decorated function

- config - Config for each subdag generated by the
decorated function

- external_inputs - External inputs to all parameterized
subdags. Note that if you pass in any external inputs
from local subdags, it overrides this (does not merge).

- parameterization -

Parameterizations for each subdag generated. Note
that this overrides any inputs/config passed to the
decorator itself.

Furthermore, note the following:

1. The parameterizations passed to the constructor are
**kwargs, so you are not allowed to name these
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load_from, inputs, or config. That's a good thing, as
these are not good names for variables anyway.

2. Any empty items (not included) will default to an
empty dict (or an empty list in the case of
parameterization)

parameterize_values

Expands a single function into n, each of which corresponds to a function in which the parameter
value is replaced by that specific value.

import pandas as pd
from hamilton.function_modifiers import parameterize_values
import internal_package_with_logic

ONE_OFF_DATES = {
#output name # doc string # input value to
function
('"D_ELECTION_2016"', 'US Election 2016 Dummy'): '2016-11-12",
("SOME_OUTPUT_NAME', 'Doc string for this thing'):
'value to pass to function',
}
# parameter matches the name of the argument in the
function below
oparameterize_values(parameter='one_off_date',
assigned_output=ONE_OFF_DATES)
def create_one_off_dates(date_index: pd.Series, one_off_date: str) -
> pd.Series:
"""Given a date index, produces a series where a 1 is placed at
the date index that would contain that event."""
one_off_dates =
internal_package_with_logic.get_business_week(one_off_date)
return
internal_package_with_logic.bool_to_int(date_index.isin([one_off_dates]))

We see here that parameterize allows you keep your code DRY by reusing the same function to
create multiple distinct outputs. The parameter key word argument has to match one of the
arguments in the function. The rest of the arguments are pulled from outside the DAG. The
_assigned_output_ key word argument takes in a dictionary of tuple(Output Name, Documentation
string) -> value.

Reference Documentation
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class hamilton.function_modifiers.parameterize_values(parameter: str, assigned_output:
Dict[Tuplel[str, str], Any])
Expands a single function into n, each of which corresponds to a function in which the
parameter value is replaced by that specific value.

import pandas as pd
from hamilton.function_modifiers import parameterize_values
import internal_package_with_logic

ONE_OFF_DATES = {

#output name # doc string # input value to
function
('D_ELECTION_2016', 'US Election 2016 Dummy'): '2016-11-12',
("SOME_OUTPUT_NAME', 'Doc string for this thing'): 'value to
pass to function',
}
# parameter matches the name of the argument in the
function below
oparameterize_values(parameter='one_off_date"',
assigned_output=ONE_OFF_DATES)
def create_one_off_dates(date_index: pd.Series, one_off_date:
str) -> pd.Series:
"'"'Given a date index, produces a series where a 1 is placed
at the date index that would contain that event.'''
one_off_dates =
internal_package_with_logic.get_business_week(one_off_date)
return
internal_package_with_logic.bool_to_int(date_index.isin([one_off_dates]))

__init__(parameter: str, assigned_output: Dict[Tuple[str, str], Any])
Constructor for a modifier that expands a single function into n, each of which
corresponds to a function in which the parameter value is replaced by that specific
value.

Parameters:
- parameter - Parameter to expand on.

- assigned_output - A map of tuple of [parameter
names, documentation] to values

Note: this was previously called @parametrized.
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pipe family

We have a family of decorators that represent a chained set of transformations. This specifically
solves the “node redefinition” problem, and is meant to represent a pipeline of chaining/
redefinitions. This is similar (and can happily be used in conjunction with) pipe in pandas. In
Pyspark this is akin to the common operation of redefining a dataframe with new columns.

For some examples have a look at: https://github.com/apache/hamilton/tree/main/examples/
scikit-learn/species_distribution_modeling

While it is generally reasonable to contain constructs within a node’s function, you should
consider the pipe family for any of the following reasons:

1. You want the transformations to display as nodes in the DAG, with the possibility of storing or
visualizing the result.

1. You want to pull in functions from an external repository, and build the DAG a little more
procedurally.

3. You want to use the same function multiple times, but with different parameters - while
@does / @parameterize can do this, this presents an easier way to do this, especially in a chain.

Reference Documentation

pipe

DeprecationWarning from 2.0.0: use pipe_input instead

class hamilton.function_modifiers.macros.pipe(*transforms: Applicable, namespace: str |
EllipsisType | None = Ellipsis, on_input: str | Collection[str] | None | EllipsisType = None,
collapse=False, _chain=False)
__init__(*transforms: Applicable, namespace: str | EllipsisType | None = Ellipsis, on_input:
str | Collection[str] | None | EllipsisType = None, collapse=False, _chain=False)
Instantiates a @pipe_input decorator.

Parameters:

- transforms - step transformations to be applied, in
order

- namespace - namespace to apply to all nodes in the
pipe. This can be “.” (the default), which resolves to
the name of the decorated function, None (which
means no namespace), or a string (which means that

all nodes will be namespaced with that string). Note


https://github.com/apache/hamilton/tree/main/examples/scikit-learn/species_distribution_modeling
https://github.com/apache/hamilton/tree/main/examples/scikit-learn/species_distribution_modeling
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that you can either use this or namespaces inside
pipe_input() ...

- on_input - setting the target parameter for all steps
in the pipe. Leave empty to select only the first
argument.

- collapse - Whether to collapse this into a single node.
This is not currently supported.

- _chain - Whether to chain the first parameter. This is
the only mode that is supported. Furthermore, this is
not externally exposed. @aflow will make use of this.

pipe_input

class hamilton.function_modifiers.macros.pipe_input(*transforms: Applicable, namespace: str |
EllipsisType | None = Ellipsis, on_input: str | Collection[str] | None | EllipsisType = None,
collapse=False, _chain=False)

Running a series of transformations on the input of the function.

To demonstrate the rules for chaining nodes, we'll be using the following example. This is
using primitives to demonstrate, but as hamilton is just functions of any python objects, this
works perfectly with dataframes, series, etc...

from hamilton.function_modifiers import step, pipe_input, value,
source

def _add one(x: int) -> int:
return x + 1

def _sum(x: int, y: int) -> int:
return x + vy

def _multiply(x: int, y: int, z: int = 10) -> int:
return x * y * z

apipe_input(
step(_add_one),
step(_multiply, y=2),
step(_sum, y=value(3)),
step(_multiply, y=source("upstream_node_to_multiply")),
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)
def final_result(upstream_int: int) -> int:
return upstream_int

upstream_int = ... # result from upstream
upstream_node_to_multiply = ... # result from upstream

output = final_result(
_multiply(
_sum(

_multiply(
_add_one(upstream_int),
y=2

),
y=3

)

y=upstream_node_to_multiply

upstream_int = ... # result from upstream
upstream_node_to_multiply = ... # result from upstream

one_added = _add_one(upstream_int)
multiplied = _multiply(one_added, y=2)
summed = _sum(multiplied, y=3)

multiplied_again = _multiply(summed, y=upstream_node_to_multiply)
output = final_result(multiplied_again)

Note that functions must have no position-only arguments (this is rare in python, but
hamilton does not handle these). This basically means that the functions must be defined
similarly to def fn(x, y, z=10) and not def fn(x, y, /, z=10). In fact, all arguments
must be named and “kwarg-friendly”, meaning that the function can happily be called with
«xkwargs , where kwargs are some set of resolved upstream values. So, no =*args are
allowed, and =+kwargs (variable keyword-only) are not permitted. Note that this is not a
design limitation, rather an implementation detail — if you feel like you need this, please
reach out.

Furthermore, the function should be typed, as a Hamilton function would be.
One has three ways to tune the shape/implementation of the subsequent nodes:

1. when / when_not / when_in / when_not_in - these are used to filter the application of the
function.
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This is valuable to reflect if/else conditions in the structure of the DAG, pulling it
out of functions, rather than buried within the logic itself. It is functionally
equivalent to @config.when .

For instance, if you want to include a function in the chain only when a config
parameter is set to a certain value, you can do:

opipe_input(
step(_add_one).when(foo="bar"),
step(_add_two,
y=source("other_node_to_add").when(foo="baz"),
)
def final_result(upstream_int: int) -> int:
return upstream_int

This will only apply the first function when the config parameter foo is setto bar,
and the second when it is set to baz .

2. named - this is used to name the node. This is useful if you want to refer to intermediate
results.
If this is left out, hamilton will automatically name the functions in a globally
unique manner. The names of these functions will not necessarily be stable/
guaranteed by the API, so if you want to refer to them, you should use named . The
default namespace will always be the name of the decorated function (which will
be the last node in the chain).

named takes in two parameters — required is the name - this will assign the nodes
with a single name and no global namespace. For instance:

apipe_input(

step(_add_one).named("a"),

step(_add_two, y=source("upstream_node")).named("b"),
)
def final_result(upstream_int: int) -> int:

return upstream_int

The above will create two nodes, a and b. a will be the result of _add_one, and
b will be the result of _add_two. final_result will then be called with the output
of b. Note that, if these are part of a namespaced operation (a subdag, in
particular), they will get the same namespace as the subdag.

The second parameter is namespace . This is used to specify a namespace for the
node. This is useful if you want to either (a) ensure that the nodes are namespaced
but share a common one to avoid name clashes (usual case), or (b) if you want a
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custom namespace (unusual case). To indicate a custom namespace, one need
simply pass in a string.

To indicate that a node should share a namespace with the rest of the step(...)
operations in a pipe, one can passin ... (the ellipsis).

apipe_input(
step(_add_one).named("a", namespace="foo"), # foo.a
step(_add_two, y=source("upstream_node")).named("b",
namespace=...), # final_result.b
)
def final_result(upstream_int: int) -> int:
return upstream_int

Note that if you pass a namespace argument to the pipe_input function, it will set
the namespace on each step operation. This is useful if you want to ensure that all
the nodes in a pipe have a common namespace, but you want to rename them.

apipe_input(
step(_add_one).named("a"), # a
step(_add_two, y=source("upstream_node")).named("b"),

# foo.b

namespace=..., # default -- final_result.a and
final _result.b, OR

namespace=None, # no namespace -- a and b are exposed
as that, OR

namespace="foo", # foo.a and foo.b

)
def final_result(upstream_int: int) -> int:
return upstream_int

In all likelihood, you should not be using this, and this is only here in case you
want to expose a node for consumption/output later. Setting the namespace in
individual nodes as well as in pipe_input is not yet supported.

3. on_input - this selects which input we will run the pipeline on.
In case on_input is set to None (default) we apply pipe_input on the first
parameter. Let us know if you wish to expand to other use-cases. You can track the
progress on this topic via: https://github.com/apache/hamilton/issues/1177

The following would apply function _add_one and _add_two to p2:

apipe_input(
step(_add_one)
step(_add_two, y=source("upstream_node")),
on_input = "p2"


https://github.com/apache/hamilton/issues/1177
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)
def final_result(pl: int, p2: int, p3: int) -> int:
return upstream_int

__init__(*transforms: Applicable, namespace: str | EllipsisType | None = Ellipsis, on_input:
str | Collection[str] | None | EllipsisType = None, collapse=False, _chain=False)
Instantiates a apipe_input decorator.

Parameters:

- transforms - step transformations to be applied, in
order

- namespace - namespace to apply to all nodes in the
pipe. This can be “.” (the default), which resolves to
the name of the decorated function, None (which
means no namespace), or a string (which means that
all nodes will be namespaced with that string). Note
that you can either use this or namespaces inside
pipe_input() ...

- on_input - setting the target parameter for all steps
in the pipe. Leave empty to select only the first
argument.

- collapse - Whether to collapse this into a single node.
This is not currently supported.

- _chain - Whether to chain the first parameter. This is
the only mode that is supported. Furthermore, this is
not externally exposed. @flow will make use of this.

pipe_output

class hamilton.function_modifiers.macros.pipe_output(*transforms: Applicable, namespace: str |
EllipsisType | None = Ellipsis, on_output: str | Collection[str] | None | EllipsisType = None,
collapse=False, _chain=False)

Running a series of transformation on the output of the function.

The decorated function declares the dependency, the body of the function gets executed,
and then we run a series of transformations on the result of the function specified by
pipe_output .

If we have nodes A=>B =>C in the DAG and decorate B with pipe_output like
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apipe_output(

step(B1),
step(B2)

)

def B(...):
return ...

we obtain the new DAG A => B.raw => B1-> B2 -> B => C, where we can think of the B.raw =>
B1->B2->B as a “pipe” that takes the raw output of B, applies to it B1, takes the output of
B1 applies to it B2 and then gets renamed to B to re-connect to the rest of the DAG.

The rules for chaining nodes are the same as for pipe_input .

For extra control in case of multiple output nodes, for example after extract_field /
extract_columns we can also specify the output node that we wish to mutate. The
following apply A to all fields while B only to field_1

aextract_columns("col 1", "col_2")
def A(...):
return ...

def B(...):
return ...

apipe_output(
step(A),
step(B).on_output("field_1"),
)
dextract_fields(
{"field 1":int, "field 2":int, "field 3":int}
)

def foo(a:int)->Dict[str,int]:
return {"field 1":1, "field 2":2, "field 3":3}

We can also do this on the global level (but cannot do on both levels at the same time). The
following would apply function A and function Bto only field_1 and field_2

apipe_output(

step(A),

step(B),

on_output = ["field_1","field_2]
)
dextract_fields(

{"field 1":int, "field 2":int, "field 3":int}

)
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def foo(a:int)->Dict[str,int]:
return {"field 1":1, "field 2":2, "field 3":3}

__init__(*transforms: Applicable, namespace: str | EllipsisType | None = Ellipsis, on_output:
str | Collection[str] | None | EllipsisType = None, collapse=False, _chain=False)
Instantiates a @pipe_output decorator.

Warning: if there is a global pipe_output target, the individual step(...).target
would only choose from the subset pre-selected from the global pipe_output target.
We have disabled this for now to avoid confusion. Leave global pipe_output target
empty if you want to choose between all the nodes on the individual step level.

Parameters:

- transforms - step transformations to be applied, in
order

- namespace - namespace to apply to all nodes in the
pipe. This can be “.” (the default), which resolves to
the name of the decorated function, None (which
means no namespace), or a string (which means that
all nodes will be namespaced with that string). Note
that you can either use this or namespaces inside

pipe_output() ...

- on_output - setting the target node for all steps in
the pipe. Leave empty to select all the output nodes.

- collapse - Whether to collapse this into a single node.
This is not currently supported.

- _chain - Whether to chain the first parameter. This is
the only mode that is supported. Furthermore, this is
not externally exposed. @aflow will make use of this.

mutate

class hamilton.function_modifiers.macros.mutate(*target_functions: Applicable | Callable,
collapse: bool = False, _chain: bool = False,
**mutating_function_kwargs: SingleDependency | Any)

Running a transformation on the outputs of a series of functions.

This is closely related to pipe_output as it effectively allows you to run transformations on
the output of a node without touching that node. We choose which target functions we wish
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to mutate by the transformation we are decorating. For now, the target functions, that will
be mutated, have to be in the same module (come speak to us if you need this capability
over multiple modules).

We suggest you define them with an prefixed underscore to only have them displayed in the
transform pipeline of the target node.

If we wish to apply _transforml to the output of A and B and _transform2 only to the
output of node B, we can do this like

def A(...):
return

def B(...):
return

amutate(A, B)
def _transformil(...):
return

amutate(B)
def transform2(...):
return ...

we obtain the new pipe-like subDAGs A.raw => _transform1-> A and B.raw —> _transform1 -
> _transform2 -> B, where the behavior is the same as pipe_output .

While it is generally reasonable to use pipe_output, you should consider mutate in the
following scenarios:

1. Loading data and applying pre-cleaning step.
2. Feature engineering via joining, filtering, sorting, etc.

3. Experimenting with different transformations across nodes by selectively turning
transformations on / off.

We assume the first argument of the decorated function to be the output of the function we
are targeting. For transformations with multiple arguments you can use key word arguments
coupled with step or value the same as with other pipe -family decorators

amutate(A, B, arg2=step('upstream_node'),
arg3=value(some_literal), ...)
def _transforml(output_from_target:correct_type, arg2:arg2_type,
arg3:arg3_type,...):

return
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You can also select individual args that will be applied to each target node by adding
apply_to(...)

amutate(

apply_to(A, arg2=step('upstream_node_1'),
arg3=value(some_literal_1)),

apply_to(B, arg2=step('upstream_node_2"'),
arg3=value(some_literal_2)),

)

def _transforml(output_from_target:correct_type, arg2:arg2_type,
arg3:arg3_type, ...):
return ...

In case of multiple output nodes, for example after extract_field / extract_columns we
can also specify the output node that we wish to mutate. The following would mutate all
columns of A individually while in the case of function B only field_1

dextract_columns("col 1", "col 2")
def A(...):
return ...

dextract_fields(
{"field 1":int, "field 2":int, "field 3":int}
)

def B(...):
return ...

amutate(
apply_to(A),
apply_to(B).on_output("field_1"),
)

def foo(a:int)->Dict[str,int]:
return {"field 1":1, "field 2":2, "field 3":3}

__init__(*target_functions: Applicable | Callable, collapse: bool = False, _chain: bool = False,
**mutating_function_kwargs: SingleDependency | Any)
Instantiates a mutate decorator.

We assume the first argument of the decorated function to be the output of the
function we are targeting.

Parameters:

- target_functions - functions we wish to mutate the
output of
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- collapse - Whether to collapse this into a single node.
This is not currently supported.

- _chain - Whether to chain the first parameter. This is
the only mode that is supported. Furthermore, this is
not externally exposed. @aflow will make use of this.

- **mutating_function_kwargs - other kwargs that the
decorated function has. Must be validly called as
f(*+kwargs) , and have a 1-to-1 mapping of kwargs to
parameters. This will be applied for all
target_functions, unless apply_to already has the
mutator function kwargs, in which case it takes those.

resolve

Reference Documentation

class hamilton.function_modifiers.resolve(*, when: ResolveAt, decorate_with: Callable[l...],
NodeTransformLifecycle])
Decorator class to delay evaluation of decorators until after the configuration is available.
Note: this is a power-user feature, and you have to enable power-user mode! To do so, you
have to add the configuration hamilton.enable_power_user_mode=True to the config you
pass into the driver.

If not, this will break when it tries to instantiate a DAG.

This is particularly useful when you don’'t know how you want your functions to resolve until
configuration time. Say, for example, we want to add two series, and we need to pass the set
of series to add as a configuration parameter, as we'll be changing it regularly. Without this,
you would have to have them as part of the same dataframe. E.G.

oparameterize_values(
series_sum_1={"s1": "series_1", "s2": "series_2"},
series sum_2={"s1": "series 3", "s2": "series 4"},

def summation(df: pd.DataFrame, sl: str, s2: str) -> pd.Series:
return df[s1] + df[s2]

Note that there are a lot of benefits to this code, but it is a workaround for the fact that we
cannot configure the dependencies. With the @resolve decorator, we can actually
dynamically set the shape of the DAG based on config:
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from hamilton.function_modifiers import resolve, ResolveAt

aresolve(
when=ResolveAt.CONFIG_AVAILABLE,
decorate_with=1lambda first_series_sum, second_series_sum:
parameterize_sources(
series _sum_1={"s1": first_series_sum[0], "s2":
second_series_sum[1]},
series _sum _2={"s1": second_series sum[1], "s2":
second_series_sum[2]},
),
)
def summation(sl: pd.Series, s2: pd.Series) -> pd.Series:
return sl + s2

Note how this works:

1. The decorate_with argument is a function that gives you the decorator you want to apply.
Currently its “hamilton-esque” — while we do not require it to be typed, you can use a
separate configuration-reoslver function (and include type information). This lambda
function must return a decorator.

2. The when argument is the point at which you want to resolve the decorator. Currently, we
only support ResolveAt.CONFIG_AVAILABLE, which means that the decorator will be resolved
at compile time, E.G. when the driver is instantiated.

1. This is then run and dynamically resolved.

This is powerful, but the code is uglier. It's meant to be used in some very specific cases, E.G.
When you want time-series data on a per-column basis (E.G. once per month), and don't
want that hardcoded. While it is possible to store this up in a JSON file and run
parameterization on the loaded result as a global variable, it is much cleaner to pass it
through the DAG, which is why we support it. However, since the code goes against one of
Hamilton’s primary tenets ( that all code is highly readable), we require that you enable
power_user_mode.

We highly recommend that you put all functions decorated with this in their own module,
keeping it separate from the rest of your functions. This way, you can import/build DAGs
from the rest of your functions without turning on power-user mode.

Initializes a delayed decorator that gets called at some specific resolution time.
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Parameters:

- decorate_with - Function that takes required and
optional parameters/returns a decorator.

- when - When to resolve the decorator. Currently only
supports ResolveAt.CONFIG_AVAILABLE.

class hamilton.function_modifiers.resolve_from_config(*, decorate_with: Callable[[...],
NodeTransformLifecycle])
Decorator class to delay evaluation of decorators until after the configuration is available.
Note: this is a power-user feature, and you have to enable power-user mode! To do so, you
have to add the configuration hamilton.enable_power_user_mode=True to the config you
pass into the driver.

This is a convenience decorator that is a subclass of resolve and passes
ResolveAt.CONFIG_AVAILABLE to the when argument such that the decorator is resoled at
compile time, E.G. when the driver is instantiated.

from hamilton.function_modifiers import resolve, ResolveAt

aresolve_from_config(
decorate_with=1lambda first_series_sum, second_series_sum:
parameterize_sources(
series_sum_1={"s1": first_series_sum[0], "s2":
second_series_sum[1]},
series _sum _2={"s1": second_series sum[1], "s2":
second_series_sum[2]},
)
)
def summation(sl: pd.Series, s2: pd.Series) -> pd.Series:
return sl + s2

Initializes a delayed decorator that gets called at some specific resolution time.

Parameters:

- decorate_with - Function that takes required and
optional parameters/returns a decorator.

- when - When to resolve the decorator. Currently only
supports ResolveAt.CONFIG_AVAILABLE.
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save_to

Reference Documentation

class hamilton.function_modifiers.save_to
Decorator that outputs data to some external source. You can think about this as the
inverse of load_from.

This decorates a function, takes the final node produced by that function and then appends
an additional node that saves the output of that function.

As the load_from decorator does, this decorator can be referred to in a dynamic way. For
instance, @save_to.json will save the output of the function to a json file. Note that this
means that the output of the function must be a dictionary (or subclass thereof), otherwise
the decorator will fail.

Looking at the json example:

®dsave_to. json(path=source("raw_data_path"),

output_name_="data_save_output")

def final_output(data: dict, valid_keys: List[str]) -> dict:
return [item for item in data if item in valid_keys]

This adds a final node to the DAG with the name “data_save_output” that accepts the
output of the function “final_output” and saves it to a json. In this case, the JSONSaver
accepts a path parameter, which is provided by the upstream node (or input) named
“raw_data_path”. The output_name_ parameter then says how to refer to the output of this
node in the DAG.

If you called this with the driver:

dr = driver.Driver(my_module)
output = dr.execute(["final_output"], {"raw_data_path": "/path/
my_data.json"})

You would just get the final result, and nothing would be saved.

If you called this with the driver:

dr = driver.Driver(my_module)
output = dr.execute(["data_save_output"], {"raw_data_path": "/
path/my_data.json"})
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You would get a dictionary of metadata (about the saving output), and the final result would
be saved to a path.

Note that you can also hardcode the path, rather than using a dependency:

dsave_to. json(path=value("/path/my_data.json"),

output_name_="data_save_output")
def final_output(data: dict, valid_keys: List[str]) -> dict:
return [item for item in data if item in valid_keys]

Note that, like the loader function, you can use literal values as kwargs and they'll get
interpreted as values. If you needs savers, you should also look into .materialize on the
driver - it's a clean way to do this in a more ad-hoc/decoupled manner.

If you want to layer savers, you'll have to use the target_ parameter, which tells the saver
which node to use.

®save_to. json(path=source("raw_data_path"),

output_name_="data_save_output", target_="data")

dsave_to. json(path=source("raw_data_path2"),

output_name_="data_save_output2", target_="data")

def final_output(data: dict, valid_keys: List[str]) -> dict:
return [item for item in data if item in valid_keys]

__init__()

subdag

Reference Documentation

class hamilton.function_modifiers.subdag(*load_from: ModuleType | Callable, inputs: Dict[str,
ParametrizedDependency] = None, config: Dict[str, Any] = None, namespace: str = None,
final_node_name: str = None, external_inputs: List[str] = None)
The @subdag decorator enables you to rerun components of your DAG with varying
parameters. That is, it enables you to “chain” what you could express with a driver into a
single DAG.

That is, instead of using Hamilton within itself:

def feature_engineering(source_path: str) -> pd.DataFrame:
""'You could recursively use Hamilton within itself.'"'
dr = driver.Driver({}, feature_modules)
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df = dr.execute(["feature_df"], inputs={"path": source_path})
return df

You instead can use the @subdag decorator to do the same thing, with the added benefit
of visibility into the whole DAG:

asubdag(
feature_modules,
inputs={"path": source("source_path")},
config={}

)

def feature_engineering(feature_df: pd.DataFrame) ->
pd.DataFrame:
return feature_df

Note that this is immensely powerful - if we draw analogies from Hamilton to standard
procedural programming paradigms, we might have the following correspondence:
- config.when + friends - if/else statements
- parameterize/extract_columns - for loop
- does — effectively macros
And so on. @subdag takes this one step further:
- @subdag - subroutine definition
E.G. take a certain set of nodes, and run them with specified parameters.

@subdag declares parameters that are outputs of its subdags. Note that, if you want to use
outputs of other components of the DAG, you can use the external_inputs parameter to
declare the parameters that do not come from the subDAG.

Why might you want to use this? Let's take a look at some examples:

1. You have a feature engineering pipeline that you want to run on multiple datasets. If its
exactly the same, this is perfect. If not, this works perfectly as well, you just have to utilize
different functions in each or the config.when + config parameter to rerun it.

2. You want to train multiple models in the same DAG that share some logic (in features or
training) - this allows you to reuse and continually add more.

3. You want to combine multiple similar DAGs (e.g. one for each business line) into one so
you can build a cross-business line model.

This basically bridges the gap between the flexibility of non-declarative pipelining
frameworks with the readability/maintainability of declarative ones.
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__init__(*load_from: ModuleType | Callable, inputs: Dict[str, ParametrizedDependency] =
None, config: Dict[str, Any] = None, namespace: str = None, final_node_name: str = None,
external_inputs: List[str] = None)

Adds a subDAG to the main DAG.

Parameters:

-load_from - The functions that will be used to
generate this subDAG.

- inputs - Parameterized dependencies to inject into all
sources of this subDAG. This should not be an
intermediate node in the subDAG.

-config - A configuration dictionary for just this
subDAG. Note that this passed in value takes
precedence over the DAG's config.

- namespace - Namespace with which to prefix nodes.
This is optional - if not included, this will default to
the function name.

- final_node_name - Name of the final node in the
subDAG. This is optional - if not included, this will
default to the function name.

- external_inputs - Parameters in the function that are
not produced by the functions passed to the subdag.
This is useful if you want to perform some logic with
other inputs in the subdag’s processing function. Note
that this is currently required to differentiate and
clarify the inputs to the subdag.

schema

@schema is a function modifier that allows you to specify a schema for the function’s inputs/
outputs. This can be used to validate data at runtime, visualize, etc...

Reference Documentation

class hamilton.function_modifiers.schema
Container class for schema stuff. This is purely so we can have a nice API for it - EG.
Schema.output
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static output(*fields: Tuple[str, str], target_: str | None = None) - SchemaOutput
Initializes a @schema.output decorator. This takes in a list of fields, which are tuples
of the form (field_name, field_type). The field type must be one of the
function_modifiers.SchemaTypes types.

Parameters:

- target - Target node to decorate - if None it'll
decorate all final nodes (E.G. sinks in the subdag),
otherwise it will decorate the specified node.

- fields - List of fields to add to the schema. Each field
is a tuple of the form (field_name, field_type)

This is implemented using tags, but that might change. Thus you should not rely on
the tags created by this decorator (which is why they are prefixed with internal).

To use this, you should decorate a node with @schema.output

Example usage:

aschema.output(
("a", "int"),
("b", "float"),
("c", "str")
)
def example_schema() -> pd.DataFrame:
return pd.DataFrame.from_records({"a": [1], "b": [2.0],

"er: ["3"11)

Then, when drawing the DAG, the schema will be displayed as sub-elements in the
node for the DAG (if display_schema is selected).

tag*
Allows you to attach metadata to a node (any node decorated with the function). A common use

of this is to enable marking nodes as part of some data product, or for GDPR/privacy purposes.

For instance:

import pandas as pd
from hamilton.function_modifiers import tag

def intermediate_column() -> pd.Series:
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pass

atag(data_product="'final', pii='true')
def final_column(intermediate_column: pd.Series) -> pd.Series:
pass

How do | query by tags?

Right now, we don’t have a specific interface to query by tags, however we do expose them via the
driver. Using the list_available_variables() capability exposes tags along with their names &
types, enabling querying of the available outputs for specific tag matches. E.g.

from hamilton import driver
dr = driver.Driver(...) # create driver as required
all_possible_outputs = dr.list_available_variables()
desired_outputs = [o.name for o in all_possible_outputs

if 'my_tag_value' == o.tags.get('my_tag_key')]
output = dr.execute(desired_outputs)

Using display_name for visualization

You can use the special display_name tag to provide a human-readable name for nodes in
graphviz visualizations. This allows you to show user-friendly names in DAG diagrams while
keeping valid Python identifiers as function names.

import pandas as pd
from hamilton.function_modifiers import tag

atag(display_name="Customer Lifetime Value")
def customer_ltv(purchases: pd.DataFrame, tenure: pd.Series) ->
pd.Series:
"""Calculate customer lifetime value.
return purchases.sum() * tenure

When you visualize the DAG using dr.display_all_functions(), the node will display “Customer
Lifetime Value” instead of “customer_ltv". This is useful for:

- Creating presentation-ready diagrams for stakeholders
- Adding business-friendly names for technical functions
- Making visualizations more readable for non-technical audiences

Note that display_name only affects visualization - the actual node name used in code remains
the function name.
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Reference Documentation

class hamilton.function_modifiers.tag(*, target_: str | Collection[str] | None | EllipsisType = None,
bypass_reserved_namespaces_: bool = False, **tags: str | List[str])
Decorator class that adds a tag to a node. Tags take the form of key/value pairings. Tags can
have dots to specify namespaces (keys with dots), but this is usually reserved for special
cases (E.G. subdecorators) that utilize them. Usually one will pass in tags as kwargs, so we

expect tags to be un-namespaced in most uses.

That is using:

atag(my_tag='tag_value')
def my_function(...) -> ...:

is un-namespaced because you cannot put a. in the keyword part (the part before the ‘=').

But using:

atag(++{'my.tag': 'tag_value'})
def my_function(...) -> ...:

allows you to add dots that allow you to namespace your tags.

Currently, tag values are restricted to allowing strings only, although we may consider
changing the in the future (E.G. thinking of lists).

Hamilton also reserves the right to change the following: * adding purely positional
arguments * not allowing users to use a certain set of top-level prefixes (E.G. any tag where
the top level is one of the values in RESERVED_TAG_PREFIX).

Example usage:

atag(foo="'bar', a_tag_key='a_tag_value', x*{'namespace.tag_key':
'tag_value'})
def my_function(...) -> ...:

bypass_reserved_namespaces_: bool = False, **tags: str | List[str])
Constructor for adding tag annotations to a function.

Parameters:

- bypass_reserved_namespaces_ - Whether to bypass
Reserved Namespace checking.
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- target_ -

Target nodes to decorate. This can be one of the
following:

o None: tag all nodes outputted by this that are
“final” (E.g. do not have a node outputted by this
that depend on them)

o Ellipsis (...): tag all nodes outputted by this

o Collection[str]l: tag only the nodes with the
specified names

o str: tag only the node with the specified name

- tags - the keys are always going to be strings, so the
type annotation here means the values are strings or
lists of values. Implicitly this is Dict[str, Union[str,
List[str]]] but the PEP guideline is to only annotate it
with the value Union[str, List[str]].

class hamilton.function_modifiers.tag_outputs(**tag_mapping: Dict[str, str | List[str]])
__init__(**tag_mapping: Dict[str, str | List[str]])
Creates a tag_outputs decorator.

Note that this currently does not validate whether the nodes are spelled correctly as
it takes in a superset of nodes.

Parameters:

tag_mapping - Mapping of output name to tags - this is
akin to applying @tag to individual outputs produced by
the function.

Example usage:

otag_output(*x{'a': {'a_tag': 'a_tag_value'}, 'b':
{'b_tag': 'b_tag_value'}})

aextract_columns("a", "b")

def example_tag_outputs() -> pd.DataFrame:

return pd.DataFrame.from_records({"a": [1], "b": [21})
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with_columns

We support the with_columns operation that appends the results as new columns to the original
dataframe for several libraries:

Pandas

Reference Documentation

class hamilton.plugins.h_pandas.with_columns(*load_from: Callable | ModuleType,
columns_to_pass: List[str] = None, pass_dataframe_as: str = None, on_input: str = None, select:
List[str] = None, namespace: str = None, config_required: List[str] = None)
Initializes a with_columns decorator for pandas. This allows you to efficiently run groups of
map operations on a dataframe.

Here's an example of calling it - if you've seen @subdag, you should be familiar with the
concepts:

# my_module.py
def a(a_from_df: pd.Series) -> pd.Series:
return _process(a)

def b(b_from_df: pd.Series) -> pd.Series:
return _process(b)

def a_b_average(a_from_df: pd.Series, b_from_df: pd.Series) ->
pd.Series:
return (a_from df + b_from df) / 2

# with_columns_module.py
def a_plus_b(a: pd.Series, b: pd.Series) -> pd.Series:
return a + b

# the with_columns call
awith_columns(
*[my_module], # Load from any module
*[a_plus_b], # or list operations directly
columns_to_pass=["a_from_df", "b_from_df"], # The columns to
pass from the dataframe to
# the subdag
select=["a", "b", "a_plus_b", "a_b_average"], # The columns
to select from the dataframe

)
def final_df(initial_df: pd.DataFrame) -> pd.DataFrame:
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# process, or just return unprocessed

In this instance the initial_df would get two columns added: a_plus_b and

a_b_average.

The operations are applied in topological order. This allows you to express the operations
individually, making it easy to unit-test and reuse.

Note that the operation is “append”, meaning that the columns that are selected are
appended onto the dataframe.

If the function takes multiple dataframes, the dataframe input to process will always be the
first argument. This will be passed to the subdag, transformed, and passed back to the
function. This follows the hamilton rule of reference by parameter name. To demonstarte
this, in the code above, the dataframe that is passed to the subdag is initial_df. That is
transformed by the subdag, and then returned as the final dataframe.

You can read it as:

“final_df is a function that transforms the upstream dataframe initial_df, running the
transformations from my_module. It starts with the columns a_from_df and b_from_df, and
then adds the columns a, b, and a_plus_b to the dataframe. It then returns the dataframe,
and does some processing on it

In case you need more flexibility you can alternatively use on_input , for example,

# with_columns_module.py
def a_from_df(initial_df: pd.Series) -> pd.Series:
return initial _df["a_from_ df"] / 100

def b_from_df(initial_df: pd.Series) -> pd.Series:
return initial_df["b_from_ df"] / 100

# the with_columns call
awith_columns(
*[my_module],
*[a_from_df],
on_input="initial_df",
select=["a_from_df", "b_from_df", "a", "b", "a_plus_b",
"a_b_average"],
)
def final_df(initial_df: pd.DataFrame, ...) -> pd.DataFrame:
# process, or just return unprocessed
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the above would output a dataframe where the two columns a_from_df and b_from_df get
overwritten.

__init__(*load_from: Callable | ModuleType, columns_to_pass: List[str] = None,
pass_dataframe_as: str = None, on_input: str = None, select: List[str] = None, namespace: str
= None, config_required: List[str] = None)

Instantiates a awith_columns decorator.

Parameters:

- load_from - The functions or modules that will be
used to generate the group of map operations.

- columns_to_pass - The initial schema of the
dataframe. This is used to determine which upstream
inputs should be taken from the dataframe, and which
shouldn't. Note that, if this is left empty (and
external_inputs is as well), we will assume that all
dependencies come from the dataframe. This cannot
be used in conjunction with on_input.

-on_input - The name of the dataframe that we're
modifying, as known to the subdag. If you pass this in,
you are responsible for extracting columns out. If not
provided, you have to pass columns_to_pass in, and
we will extract the columns out on the first parameter
for you.

- select - The end nodes that represent columns to be
appended to the original dataframe via with_columns.
Existing columns will be overridden. The selected
nodes need to have the corresponding column type,
in this case pd.Series, to be appended to the original
dataframe.

- namespace - The namespace of the nodes, so they
don’t clash with the global namespace and so this can
be reused. If its left out, there will be no namespace
(in which case you'll want to be careful about
repeating it/reusing the nodes in other parts of the
DAG.)

- config_required - the list of config keys that are
required to resolve any functions. Pass in None if you
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want the functions/modules to have access to all
possible config.

Polar (Eager)

Reference Documentation

class hamilton.plugins.h_polars.with_columns(*load_from: Callable | ModuleType,
columns_to_pass: List[str] = None, pass_dataframe_as: str = None, on_input: str = None, select:
List[str] = None, namespace: str = None, config_required: List[str] = None)

Initializes a with_columns decorator for polars.

This allows you to efficiently run groups of map operations on a dataframe. We support
both eager and lazy mode in polars. In case of using eager mode the type should be
pl.DataFrame and the subsequent operations run on columns with type pl.Series.

Here's an example of calling in eager mode - if you've seen @subdag, you should be
familiar with the concepts:

# my_module.py
def a_b_average(a: pl.Series, b: pl.Series) -> pl.Series:
return (a + b) / 2

# with_columns_module.py
def a_plus_b(a: pl.Series, b: pl.Series) -> pl.Series:
return a + b

# the with_columns call
awith_columns(
*[my_module], # Load from any module
*[a_plus_b], # or list operations directly
columns_to_pass=["a", "b"], # The columns to pass from the
dataframe to
# the subdag
select=["a_plus_b", "a_b_average"], # The columns to append
to the dataframe
)
def final_df(initial_df: pl.DataFrame) -> pl.DataFrame:
# process, or just return unprocessed

In this instance the initial_df would get two columns added: a_plus_b and

a_b_average .
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Note that the operation is “append”, meaning that the columns that are selected are
appended onto the dataframe.

If the function takes multiple dataframes, the dataframe input to process will always be the
first argument. This will be passed to the subdag, transformed, and passed back to the
function. This follows the hamilton rule of reference by parameter name. To demonstarte
this, in the code above, the dataframe that is passed to the subdag is initial_df. That is
transformed by the subdag, and then returned as the final dataframe.

You can read it as:

“final_df is a function that transforms the upstream dataframe initial_df, running the
transformations from my_module. It starts with the columns a_from_df and b_from_df, and
then adds the columns a, b, and a_plus_b to the dataframe. It then returns the dataframe,
and does some processing on it

In case you need more flexibility you can alternatively use on_input , for example,

# with_columns_module.py
def a_from_df() -> pl.Expr:
return pl.col(a).alias("a") / 100

def b_from_df() -> pl.Expr:
return pl.col(b).alias("b") / 100

# the with_columns call
awith_columns(
*[my_module],
on_input="initial_df",
select=["a_from_df", "b_from_df", "a_plus_b", "a_b_average"],

)
def final_df(initial_df: pl.DataFrame) -> pl.DataFrame:
# process, or just return unprocessed

the above would output a dataframe where the two columns a and b get overwritten.

__init__(*load_from: Callable | ModuleType, columns_to_pass: List[str] = None,
pass_dataframe_as: str = None, on_input: str = None, select: List[str] = None, namespace: str
= None, config_required: List[str] = None)

Instantiates a awith_columns decorator.

Parameters:

- load_from - The functions or modules that will be
used to generate the group of map operations.
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- columns_to_pass - The initial schema of the
dataframe. This is used to determine which upstream
inputs should be taken from the dataframe, and which
shouldn't. Note that, if this is left empty (and
external_inputs is as well), we will assume that all
dependencies come from the dataframe. This cannot
be used in conjunction with on_input.

-on_input - The name of the dataframe that we're
modifying, as known to the subdag. If you pass this in,
you are responsible for extracting columns out. If not
provided, you have to pass columns_to_pass in, and
we will extract the columns out on the first parameter
for you.

- select - The end nodes that represent columns to be
appended to the original dataframe via with_columns.
Existing columns will be overridden. The selected
nodes need to have the corresponding column type,
in this case pl.Series, to be appended to the original
dataframe.

- namespace - The namespace of the nodes, so they
don’t clash with the global namespace and so this can
be reused. If its left out, there will be no namespace
(in which case you'll want to be careful about
repeating it/reusing the nodes in other parts of the
DAG.)

- config_required - the list of config keys that are
required to resolve any functions. Pass in None if you
want the functions/modules to have access to all
possible config.

Polars (Lazy)

Reference Documentation

class hamilton.plugins.h_polars_lazyframe.with_columns(*load_from: Callable | ModuleType,
columns_to_pass: List[str] = None, pass_dataframe_as: str = None, on_input: str = None, select:
List[str] = None, namespace: str = None, config_required: List[str] = None)

Initializes a with_columns decorator for polars.
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This allows you to efficiently run groups of map operations on a dataframe. We support
both eager and lazy mode in polars. For lazy execution, use pl.LazyFrame and the
subsequent operations should be typed as pl.Expr. See examples/polars/with_columns for a
practical implementation in both variations.

The lazy execution would be:

# my_module.py
def a_b_average(a: pl.Expr, b: pl.Expr) -> pl.Expr:
return (a + b) / 2

# with_columns_module.py
def a_plus_b(a: pl.Expr, b: pl.Expr) -> pl.Expr:
return a + b

# the with_columns call
awith_columns(
*[my_module], # Load from any module
*[a_plus_b], # or list operations directly
columns_to_pass=["a_from_df", "b_from_df"], # The columns to
pass from the dataframe to
# the subdag
select=["a_plus_b", "a_b_average"], # The columns to append
to the dataframe

)
def final_df(initial_df: pl.LazyFrame) -> pl.LazyFrame:
# process, or just return unprocessed

Note that the operation is “append”, meaning that the columns that are selected are
appended onto the dataframe.

If the function takes multiple dataframes, the dataframe input to process will always be the
first argument. This will be passed to the subdag, transformed, and passed back to the
function. This follows the hamilton rule of reference by parameter name. To demonstarte
this, in the code above, the dataframe that is passed to the subdag is initial_df. That is
transformed by the subdag, and then returned as the final dataframe.

You can read it as:

“final_df is a function that transforms the upstream dataframe initial_df, running the
transformations from my_module. It starts with the columns a_from_df and b_from_df, and
then adds the columns a, b, and a_plus_b to the dataframe. It then returns the dataframe,
and does some processing on it

In case you need more flexibility you can alternatively use on_input , for example,
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# with_columns_module.py
def a_from_df() -> pl.Expr:
return pl.col(a).alias("a") / 100

def b_from_df() -> pd.Expr:
return pl.col(a).alias("b") / 100

# the with_columns call
awith_columns(
*[my_module],
on_input="initial_df",
select=["a_from_df", "b_from_df", "a_plus_b", "a_b_average"],
)
def final_df(initial_df: pl.LazyFrame) -> pl.LazyFrame:
# process, or just return unprocessed

the above would output a dataframe where the two columns a and b get overwritten.

__init__(*load_from: Callable | ModuleType, columns_to_pass: List[str] = None,
pass_dataframe_as: str = None, on_input: str = None, select: List[str] = None, namespace: str
= None, config_required: List[str] = None)

Instantiates a awith_columns decorator.

Parameters:

- load_from - The functions or modules that will be
used to generate the group of map operations.

- columns_to_pass - The initial schema of the
dataframe. This is used to determine which upstream
inputs should be taken from the dataframe, and which
shouldn't. Note that, if this is left empty (and
external_inputs is as well), we will assume that all
dependencies come from the dataframe. This cannot
be used in conjunction with on_input.

-on_input - The name of the dataframe that we're
modifying, as known to the subdag. If you pass this in,
you are responsible for extracting columns out. If not
provided, you have to pass columns_to_pass in, and
we will extract the columns out on the first parameter
for you.

- select - The end nodes that represent columns to be
appended to the original dataframe via with_columns.
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Existing columns will be overridden. The selected
nodes need to have the corresponding column type,
in this case pl.Expr, to be appended to the original
dataframe.

- namespace - The namespace of the nodes, so they
don’t clash with the global namespace and so this can
be reused. If its left out, there will be no namespace
(in which case you'll want to be careful about
repeating it/reusing the nodes in other parts of the
DAG.)

- config_required - the list of config keys that are
required to resolve any functions. Pass in None if you
want the functions/modules to have access to all
possible config.

PySpark

This is part of the hamilton pyspark integration. To install, run:
pip install sf-hamilton[pyspark]
Reference Documentation

class hamilton.plugins.h_spark.with_columns(*load_from: Callable | ModuleType,
columns_to_pass: List[str] = None, pass_dataframe_as: str = None, on_input: str = None, select:
List[str] = None, namespace: str = None, mode: str = 'append’, config_required: List[str] = None)
__init__(*load_from: Callable | ModuleType, columns_to_pass: List[str] = None,
pass_dataframe_as: str = None, on_input: str = None, select: List[str] = None, namespace: str
= None, mode: str = 'append’, config_required: List[str] = None)
Initializes a with_columns decorator for spark. This allows you to efficiently run
groups of map operations on a dataframe, represented as pandas/primitives
UDFs. This effectively “linearizes” compute — meaning that a DAG of map
operations can be run as a set of .withColumn operations on a single dataframe
- ensuring that you don’'t have to do a complex extract then join process on
spark, which can be inefficient.

Here's an example of calling it - if you've seen @subdag, you should be
familiar with the concepts:

# my_module.py
def a(a_from_df: pd.Series) -> pd.Series:
return _process(a)
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def b(b_from_df: pd.Series) -> pd.Series:
return _process(b)

def a_plus_b(a_from_df: pd.Series, b_from_df:
pd.Series) -> pd.Series:
return a + b

# the with_columns call
awith_columns(
load_from=[my_module], # Load from any module
columns_to_pass=["a_from_df", "b_from_df"], # The
columns to pass from the dataframe to
# the subdag
select=["a", "b", "a_plus_b"], # The columns to
select from the dataframe

)
def final_df(initial_df: ps.DataFrame) -> ps.DataFrame:
# process, or just return unprocessed

You can think of the above as a series of withColumn calls on the dataframe,
where the operations are applied in topological order. This is significantly more
efficient than extracting out the columns, applying the maps, then joining, but
also allows you to express the operations individually, making it easy to unit-
test and reuse.

Note that the operation is “append”, meaning that the columns that are
selected are appended onto the dataframe. We will likely add an option to have
this be either “select” or “append” mode.

If the function takes multiple dataframes, the dataframe input to process will
always be the first one. This will be passed to the subdag, transformed, and
passed back to the functions. This follows the hamilton rule of reference by
parameter name. To demonstarte this, in the code above, the dataframe that is
passed to the subdag is initial_df. That is transformed by the subdag, and then
returned as the final dataframe.

You can read it as:

“final_df is a function that transforms the upstream dataframe initial_df,
running the transformations from my_module. It starts with the columns
a_from_df and b_from_df, and then adds the columns a, b, and a_plus_b to the
dataframe. It then returns the dataframe, and does some processing on it



385 Decorators

Parameters:
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- load_from - The functions that will be used to

generate the group of map operations.

- columns_to_pass - The initial schema of the

dataframe. This is used to determine which upstream
inputs should be taken from the dataframe, and which
shouldn't. Note that, if this is left empty (and
external_inputs is as well), we will assume that all
dependencies come from the dataframe. This cannot
be used in conjunction with pass_dataframe_as.

- pass_dataframe_as - The name of the dataframe that

we're modifying, as known to the subdag. If you pass
this in, you are responsible for extracting columns out.
If not provided, you have to pass columns_to_pass in,
and we will extract the columns out for you.

-select - Outputs to select from the subdag, i.e.

functions/module passed int. If this is left blank it will
add all possible columns from the subdag to the
dataframe.

- namespace - The namespace of the nodes, so they

don’t clash with the global namespace and so this can
be reused. If its left out, there will be no namespace
(in which case you'll want to be careful about
repeating it/reusing the nodes in other parts of the
DAG.)

- mode - The mode of the operation. This can be either

“append” or “select”. If it is “append”, it will keep all
original columns in the dataframe, and append what's
in select. If it is “select”, it will do a global select of
columns in the dataframe from the select parameter.
Note that, if the select parameter is left blank, it will
add all columns in the dataframe that are in the
subdag. This defaults to append. If you're using select,
use the @select decorator instead.

- config_required - the list of config keys that are

required to resolve any functions. Pass in None if you
want the functions/modules to have access to all
possible config.
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Currently, we have one main driver. It's highly parameterizable, allowing you to customize:

- The way the DAG is executed (how each node is executed), i.e. either locally, in parallel, or on a
cluster!

- How the results are materialized back to you - e.g. a DataFrame, a dictionary, your custom
object!

To tune the above, pass in a Graph Adapter, a Result Builder, and/or anotehr lifecycle method -
see ResultBuilders, GraphAdapters.

Let's walk through how you might use the Hamilton Driver.

Instantiation

1. Determine the configuration required to setup the DAG.
2. Provide the python modules that should be crawled to create the DAG.

3. Optional. Determine the return type of the object you want execute() to return. Default is to
create a Pandas DataFrame.

from hamilton import driver
from hamilton import base

# 1. Setup config. See the Parameterizing the DAG section for usage
config = {}

# 2. we need to tell hamilton where to load function definitions from
module_name = 'my_functions'

module = importlib.import_module(module_name) # or simply "import
my_functions"

# 3. Determine the return type -- default is a pandas.DataFrame.
adapter = base.SimplePythonDataFrameGraphAdapter()
# See GraphAdapter docs for more details.

# These all feed into creating the driver & thus DAG.
dr = driver.Driver(config, module, adapter=adapter)


https://github.com/apache/hamilton/blob/main/hamilton/driver.py
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Execution

Using a DAG once

This approach assumes that all inputs were passed in with the config dictionary above.

output = ['outputl', 'output2', ...]
df = dr.execute(output)

Using a DAG multiple times

This approach assumes that at least one input is not provided in the config dictionary provided
to the constructor, and instead you provide that input to each execute invocation.

output = ['outputl', 'output2', ...]
for data in dataset: # if data 1s a dict of values.
df = dr.execute(output, inputs=data)

Short circuiting some DAG computation

This will force Apache Hamilton to short circuit a particular computation path, and use the passed
in override as a result of that particular node.

output = ['outputl', 'output2', ...]
df = dr.execute(output, overrides={'intermediate_node':
intermediate_value})

Reference

Builder
Use this to instantiate a driver.

class hamilton.driver.Builder

__init__()
Constructs a driver builder. No parameters as you call methods to set fields.
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allow_module_overrides() - Builder
Same named functions in different modules get overwritten. If multiple modules have
same named functions, the later module overrides the previous one(s). The order of
listing the modules is important, since later ones will overwrite the previous ones.
This is a global call affecting all imported modules. See https://github.com/apache/
hamilton/tree/main/examples/module_overrides for more info.

Returns:

self

build() » Driver

Builds the driver — note that this can return a different class, so you'll likely want to
have a sense of what it returns.

Note: this defaults to a dictionary adapter if no adapter is set.

Returns:

The driver you specified.

property cache: HamiltonCacheAdapter | None
Attribute to check if a ~cache was set, either via .with_cache() or
with_adapters(SmartCacheAdapter())

Required for the check ._require_field_unset()

copy() - Builder
Creates a copy of the current state of this Builder.

NOTE. The copied Builder currently holds reference of Builder attributes

enable_dynamic_execution(*, allow_experimental_mode: bool = False) - Builder

Enables the Parallelizable[] type, which in turn enables: 1. Grouped execution into
tasks 2. Parallel execution :return: self

with_adapter(adapter: HamiltonGraphAdapter) - Builder
Sets the adapter to use.

Parameters:

adapter - Adapter to use.

Returns:


https://github.com/apache/hamilton/tree/main/examples/module_overrides
https://github.com/apache/hamilton/tree/main/examples/module_overrides
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self

with_adapters(*adapters: BasePreDoAnythingHook | BaseDoCheckEdgeTypesMatch |
BaseDoValidatelnput | BaseValidateNode | BaseValidateGraph | BasePostGraphConstruct |
BasePostGraphConstructAsync | BasePreGraphExecute | BasePreGraphExecuteAsync |
BasePostTaskGroup | BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn
| BasePreTaskExecute | BasePreTaskExecuteAsync | BasePreNodeExecute |
BasePreNodeExecuteAsync | BaseDoNodeExecute | BaseDoNodeExecuteAsync |
BasePostNodeExecute | BasePostNodeExecuteAsync | BasePostTaskExecute |
BasePostTaskExecuteAsync | BasePostGraphExecute | BasePostGraphExecuteAsync |
BaseDoBuildResult) - Builder

Sets the adapter to use.

Parameters:

adapter - Adapter to use.

Returns:

self

with_cache(path: str | Path = 'hamilton_cache', metadata_store: MetadataStore | None =
None, result_store: ResultStore | None = None, default: Literal[True] | Sequence[str] | None =
None, recompute: Literal[True] | Sequence[str] | None = None, ignore: Literal[True] |
Sequence[str] | None = None, disable: Literal[True] | Sequence[str] | None = None,
default_behavior: Literal['default’, 'recompute’, 'disable’, 'ignore'] = 'default’,
default_loader_behavior: Literal['default’, 'recompute’, 'disable’, 'ignore'] = 'default’,
default_saver_behavior: Literal['default’, 'recompute’, 'disable’, 'ignore'] = 'default’,
log_to_file: bool = False) - Builder

Add the caching adapter to the Driver

Parameters:

- path - path where the cache metadata and results
will be stored

- metadata_store - BaseStore handling metadata for
the cache adapter

- result_store - BaseStore caching dataflow execution
results

- default - Set caching behavior to DEFAULT for
specified node names. If True, apply to all nodes.
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- recompute - Set caching behavior to RECOMPUTE for
specified node names. If True, apply to all nodes.

- ignore - Set caching behavior to IGNORE for specified
node names. If True, apply to all nodes.

- disable - Set caching behavior to DISABLE for
specified node names. If True, apply to all nodes.

- default_behavior - Set the default caching behavior.

- default_loader_behavior - Set the default caching
behavior Dataloader nodes.

- default_saver_behavior - Set the default caching
behavior DataSaver nodes.

Log_to_file:

If True, the cache adapter logs will be stored in JSONL
format under the metadata_store directory

Returns:

self

Learn more on the Caching Concepts page.

from hamilton import driver
import my_dataflow

dr = (
driver.Builder()
.with_module(my_dataflow)
.with_cache()
.build()

)

# execute twice
dr.execute([...])
dr.execute([...])

# view cache logs
dr.cache.logs()

with_config(config: Dict[str, Any]) - Builder
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Adds the specified configuration to the config. This can be called multilple times -
later calls will take precedence.

Parameters:

config - Config to use.

Returns:

self

with_execution_manager(execution_manager: ExecutionManager) - Builder
Sets the execution manager to use. Note that this cannot be used if local_executor or
remote_executor are also set

Parameters:

execution_manager

Returns:

self

with_grouping_strategy(grouping_strategy: GroupingStrategy) - Builder
Sets a node grouper, which tells the driver how to group nodes into tasks for
execution.

Parameters:

node_grouper — Node grouper to use.

Returns:

self

with_local_executor(local_executor: TaskExecutor) - Builder
Sets the execution manager to use. Note that this cannot be used if local_executor or
remote_executor are also set

Parameters:

local_executor — Local executor to use
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Returns:

self

with_materializers(*materializers: ExtractorFactory | MaterializerFactory) - Builder

Add materializer nodes to the Driver The generated nodes can be referenced by name
in .execute()

Parameters:

materializers - materializers to add to the dataflow

Returns:

self

with_modules(*modules: ModuleType) - Builder
Adds the specified modules to the modules list. This can be called multiple times.

Parameters:

modules - Modules to use.

Returns:

self

with_remote_executor(remote_executor: TaskExecutor) - Builder

Sets the execution manager to use. Note that this cannot be used if local_executor or
remote_executor are also set

Parameters:

remote_executor - Remote executor to use

Returns:

self

Driver

Use this driver in a general python context. E.g. batch, jupyter notebook, etc.
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class hamilton.driver.Driver(config: Dict[str, Any], *modules: ModuleType, adapter:
BasePreDoAnythingHook | BaseDoCheckEdgeTypesMatch | BaseDoValidatelnput |
BaseValidateNode | BaseValidateGraph | BasePostGraphConstruct |
BasePostGraphConstructAsync | BasePreGraphExecute | BasePreGraphExecuteAsync |
BasePostTaskGroup | BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn |
BasePreTaskExecute | BasePreTaskExecuteAsync | BasePreNodeExecute |
BasePreNodeExecuteAsync | BaseDoNodeExecute | BaseDoNodeExecuteAsync |
BasePostNodeExecute | BasePostNodeExecuteAsync | BasePostTaskExecute |
BasePostTaskExecuteAsync | BasePostGraphExecute | BasePostGraphExecuteAsync |
BaseDoBuildResult | List[BasePreDoAnythingHook | BaseDoCheckEdgeTypesMatch |
BaseDoValidatelnput | BaseValidateNode | BaseValidateGraph | BasePostGraphConstruct |
BasePostGraphConstructAsync | BasePreGraphExecute | BasePreGraphExecuteAsync |
BasePostTaskGroup | BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn |
BasePreTaskExecute | BasePreTaskExecuteAsync | BasePreNodeExecute |
BasePreNodeExecuteAsync | BaseDoNodeExecute | BaseDoNodeExecuteAsync |
BasePostNodeExecute | BasePostNodeExecuteAsync | BasePostTaskExecute |
BasePostTaskExecuteAsync | BasePostGraphExecute | BasePostGraphExecuteAsync |
BaseDoBuildResult] | None = None, allow_module_overrides: bool = False, _materializers:
Sequence[ExtractorFactory | MaterializerFactory] = None, _graph_executor: GraphExecutor = None,
_use_legacy_adapter: bool = True)

This class orchestrates creating and executing the DAG to create a dataframe.

from hamilton import driver
from hamilton import base

# 1. Setup config or invariant input.
config = {}

# 2. we need to tell hamilton where to load function definitions
from
import my_functions

# or programmatically (e.g. you can script module loading)
module_name = "my_functions"
my_functions = importlib.import_module(module_name)

# 3. Determine the return type -- default is a pandas.DataFrame.
adapter = base.SimplePythonDataFrameGraphAdapter() # See
GraphAdapter docs for more details.

# These all feed into creating the driver & thus DAG.
dr = driver.Driver(config, module, adapter=adapter)

__init__(config: Dict[str, Any], *modules: ModuleType, adapter: BasePreDoAnythingHooR |
BaseDoCheckEdgeTypesMatch | BaseDoValidatelnput | BaseValidateNode |
BaseValidateGraph | BasePostGraphConstruct | BasePostGraphConstructAsync |
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BasePreGraphExecute | BasePreGraphExecuteAsync | BasePostTaskGroup |
BasePostTaskRExpand | BasePreTaskSubmission | BasePostTaskReturn | BasePreTaskExecute
| BasePreTaskExecuteAsync | BasePreNodeExecute | BasePreNodeExecuteAsync |
BaseDoNodeExecute | BaseDoNodeExecuteAsync | BasePostNodeExecute |
BasePostNodeExecuteAsync | BasePostTaskExecute | BasePostTaskExecuteAsync |
BasePostGraphExecute | BasePostGraphExecuteAsync | BaseDoBuildResult |
List[BasePreDoAnythingHook | BaseDoCheckEdgeTypesMatch | BaseDoValidatelnput |
BaseValidateNode | BaseValidateGraph | BasePostGraphConstruct |
BasePostGraphConstructAsync | BasePreGraphExecute | BasePreGraphExecuteAsync |
BasePostTaskGroup | BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn
| BasePreTaskExecute | BasePreTaskExecuteAsync | BasePreNodeExecute |
BasePreNodeExecuteAsync | BaseDoNodeExecute | BaseDoNodeExecuteAsync |
BasePostNodeExecute | BasePostNodeExecuteAsync | BasePostTaskExecute |
BasePostTaskExecuteAsync | BasePostGraphExecute | BasePostGraphExecuteAsync |
BaseDoBuildResult] | None = None, allow_module_overrides: bool = False, _materializers:
Sequence[ExtractorFactory | MaterializerFactory] = None, _graph_executor: GraphExecutor =
None, _use_legacy_adapter: bool = True)

Constructor: creates a DAG given the configuration & modules to crawl.

Parameters:

-config - This is a dictionary of initial data &
configuration. The contents are used to help create
the DAG.

- modules - Python module objects you want to inspect
for Hamilton Functions.

- adapter - Optional. A way to wire in another way of
“executing” a hamilton graph. Defaults to using
original Hamilton adapter which is single threaded in
memory python.

- allow_module_overrides - Optional. Same named
functions get overridden by later modules. The order
of listing the modules is important, since later ones
will overwrite the previous ones. This is a global call
affecting all imported modules. See https://
github.com/apache/hamilton/tree/main/examples/
module_overrides for more info.

- _materializers - Not public facing, do not use this
parameter. This is injected by the builder.


https://github.com/apache/hamilton/tree/main/examples/module_overrides
https://github.com/apache/hamilton/tree/main/examples/module_overrides
https://github.com/apache/hamilton/tree/main/examples/module_overrides
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- _graph_executor - Not public facing, do not use this
parameter. This is injected by the builder. If you need
to tune execution, use the builder to do so.

- _use_legacy_adapter - Not public facing, do not use
this parameter. This represents whether or not to use
the legacy adapter. Defaults to True, as this should be
backwards compatible. In Hamilton 2.0.0, this will be
removed.

property cache: HamiltonCacheAdapter
Directly access the cache adapter

capture_constructor_telemetry(error: str | None, modules: Tuple[ModuleType], config:
Dict[str, Any], adapter: LifecycleAdapterSet)
Captures constructor telemetry. Notes: (1) we want to do this in a way that does not
break. (2) we need to account for all possible states, e.g. someone passing in None, or
assuming that the entire constructor code ran without issue, e.g. adapter was
assigned to self.

Parameters:
- error - the sanitized error string to send.
- modules - the list of modules, could be None.
- config - the config dict passed, could be None.

- adapter - the adapter passed in, might not be
attached to self yet.

capture_execute_telemetry(error: str [ None, final_vars: List[str], inputs: Dict[str, Any],
overrides: Dict[str, Any], run_successful: bool, duration: float)
Captures telemetry after execute has run.

Notes: (1) we want to be quite defensive in not breaking anyone’s code with things we
do here. (2) thus we want to double-check that values exist before doing something
with them.

Parameters:
- error - the sanitized error string to capture, if any.
- final_vars - the list of final variables to get.

- inputs - the inputs to the execute function.
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- overrides - any overrides to the execute function.
- run_successful — whether this run was successful.

- duration - time it took to run execute.

display_all_functions(output_file_path: str = None, render_kwargs: dict = None,
graphviz_kwargs: dict = None, show_legend: bool = True, orient: str = 'LR', hide_inputs: bool
= False, deduplicate_inputs: bool = False, show_schema: bool = True, custom_style_function:
Callable = None, keep_dot: bool = False) - graphviz.Digraph | None

Displays the graph of all functions loaded!

Parameters:

- output_file_path - the full URI of path + file name to
save the dot file to. Eg ‘some/path/graph-all.dot’
Optional. No need to pass it in if you're in a Jupyter
Notebook.

- render_kwargs - a dictionary of values we’ll pass to
graphviz render function. Defaults to viewing. If you do
not want to view the file, pass in {view’False}. See
https://graphviz.readthedocs.io/en/stable/
api.html#tgraphviz.Graph.render for other options.

- graphviz_kwargs - Optional. Kwargs to be passed to
the graphviz graph object to configure it. Eg.
dict(graph_attr={ratio”: “1'}) will set the aspect ratio to
be equal of the produced image. See https://
graphviz.org/doc/info/attrs.html for options.

-show_legend - If True, add a legend to the
visualization based on the DAG's nodes.

- orient - LR stands for “left to right”. Accepted values
are TB, LR, BT, RL. orient will be overwridden by the
value of graphviz_kwargs[‘graph_attr'][‘rankdir’] see
(https://graphviz.org/docs/attr-types/rankdir/)

- hide_inputs - If True, no input nodes are displayed.

- deduplicate_inputs - If True, remove duplicate input
nodes. Can improve readability depending on the
specifics of the DAG.


https://graphviz.readthedocs.io/en/stable/api.html#graphviz.Graph.render
https://graphviz.readthedocs.io/en/stable/api.html#graphviz.Graph.render
https://graphviz.org/doc/info/attrs.html
https://graphviz.org/doc/info/attrs.html
https://graphviz.org/docs/attr-types/rankdir/
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- show_schema - If True, display the schema of the DAG
if the nodes have schema data provided

- custom_style_function - Optional. Custom style
function. See example in repository for example use.

- keep_dot - If true, produce a DOT file (ref: https://
graphviz.org/doc/info/lang.html)

Returns:

the graphviz object if you want to do more with it. If
returned as the result in a Jupyter Notebook cell, it will
render.

display_downstream_of(*node_names: str, output_file_path: str = None, render_kwargs:
dict = None, graphviz_kwargs: dict = None, show_legend: bool = True, orient: str = 'LR’,
hide_inputs: bool = False, deduplicate_inputs: bool = False, show_schema: bool = True,
custom_style_function: Callable = None, keep_dot: bool = False) - graphviz.Digraph | None
Creates a visualization of the DAG starting from the passed in function name(s).

Note: for any “node” visualized, we will also add its parents to the visualization as
well, so there could be more nodes visualized than strictly what is downstream of the
passed in function name(s).

Parameters:

- node_names - names of function(s) that are starting
points for traversing the graph.

- output_file_path - the full URI of path + file name to
save the dot file to. Eg ‘some/path/graph.dot.
Optional. No need to pass it in if you're in a Jupyter
Notebook.

- render_kwargs - a dictionary of values we’ll pass to
graphviz render function. Defaults to viewing. If you do
not want to view the file, pass in {'view’:False}.

- graphviz_kwargs - Kwargs to be passed to the
graphviz  graph object to configure it. Eg
dict(graph_attr={'ratio’: “1'}) will set the aspect ratio to
be equal of the produced image.

-show_legend - If True, add a legend to the
visualization based on the DAG's nodes.


https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html
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- orient - LR stands for “left to right”. Accepted values
are TB, LR, BT, RL. orient will be overwridden by the
value of graphviz_kwargs[‘graph_attr’][‘rankdir’] see
(https://graphviz.org/docs/attr-types/rankdir/)

- hide_inputs - If True, no input nodes are displayed.

- deduplicate_inputs - If True, remove duplicate input
nodes. Can improve readability depending on the
specifics of the DAG.

- show_schema - If True, display the schema of the DAG
if nodes have schema data provided

- custom_style_function - Optional. Custom style
function.

- keep_dot - If true, produce a DOT file (ref: https://
graphviz.org/doc/info/lang.html)

Returns:

the graphviz object if you want to do more with it. If
returned as the result in a Jupyter Notebook cell, it will
render.

display_upstream_of(*node_names: str, output_file_path: str = None, render_kwargs: dict =

None, graphviz_kwargs: dict = None, show_legend: bool = True, orient: str = 'LR’,

hide_inputs: bool = False, deduplicate_inputs: bool = False, show_schema: bool = True,

custom_style_function: Callable = None, keep_dot: bool = False) - graphviz.Digraph | None
Creates a visualization of the DAG going backwards from the passed in function
name(s).

Note: for any “node” visualized, we will also add its parents to the visualization as
well, so there could be more nodes visualized than strictly what is upstream of the
passed in function name(s).

Parameters:

- node_names - names of function(s) that are starting
points for traversing the graph.

- output_file_path - the full URI of path + file name to
save the dot file to. Eg ‘some/path/graph.dot.
Optional. No need to pass it in if you're in a Jupyter
Notebook.


https://graphviz.org/docs/attr-types/rankdir/
https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html
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- render_kwargs - a dictionary of values we’ll pass to
graphviz render function. Defaults to viewing. If you do
not want to view the file, pass in {viewFalse}.
Optional.

- graphviz_kwargs - Kwargs to be passed to the
graphviz  graph object to configure it. Eg
dict(graph_attr={'ratio’: “1'}) will set the aspect ratio to
be equal of the produced image. Optional.

-show_legend - If True, add a legend to the
visualization based on the DAG's nodes.

- orient - LR stands for “left to right”. Accepted values
are TB, LR, BT, RL. orient will be overwridden by the
value of graphviz_kwargs[‘graph_attr’][‘rankdir’] see
(https://graphviz.org/docs/attr-types/rankdir/)

- hide_inputs - If True, no input nodes are displayed.

- deduplicate_inputs - If True, remove duplicate input
nodes. Can improve readability depending on the
specifics of the DAG.

- show_schema - If True, display the schema of the DAG
if nodes have schema data provided

- custom_style_function - Optional. Custom style
function.

- keep_dot - If true, produce a DOT file (ref: https://
graphviz.org/doc/info/lang.html)

Returns:

the graphviz object if you want to do more with it. If
returned as the result in a Jupyter Notebook cell, it will
render.

execute(final_vars: List[str | Callable | HamiltonNode], overrides: Dict[str, Any] = None,
display_graph: bool = False, inputs: Dict[str, Any] = None) - Any
Executes computation.


https://graphviz.org/docs/attr-types/rankdir/
https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html
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Parameters:

- final_vars - the final list of outputs we want to
compute.

- overrides - values that will override “nodes” in the
DAG.

- display_graph - DEPRECATED. Whether we want to
display the graph being computed.

- inputs - Runtime inputs to the DAG.

Returns:

an object consisting of the variables requested,
matching the type returned by the GraphAdapter. See
constructor for how the GraphAdapter is initialized. The
default one right now returns a pandas dataframe.

export_execution(final_vars: List[str], inputs: Dict[str, Any] = None, overrides: Dict[str, Any] =
None) - str
Method to create JSON representation of the Graph.

Parameters:
- final_vars - The final variables to compute.
- inputs - Optional. The inputs to the DAG.

- overrides - Optional. Overrides to the DAG.

Returns:

JSON string representation of the graph.

has_cycles(final_vars: List[str | Callable | HamiltonNode],
_fn_graph: FunctionGraph = None) - bool
Checks that the created graph does not have cycles.
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Parameters:
- final_vars - the outputs we want to compute.

- _fn_graph - the function graph to check for cycles,
used internally

Returns:

boolean True for cycles, False for no cycles.

list_available_variables(*, tag_filter: Dict[str, str | None | List[str]] = None) -
ListfHamiltonNode]
Returns available variables, i.e. outputs.

These variables correspond 11 with nodes in the DAG, and contain the following
information:

1. name: the name of the node
2. tags: the tags associated with this node
3. type: The type of data this node returns

4. is_external_input: Whether this node represents an external input
(required from outside), or not (has a function specifying its behavior).

# gets all

dr.list_available_variables()

# gets exact matching tag name and tag value
dr.list_available_variables({"TAG_NAME": "TAG_VALUE"})

# gets all matching tag name and at least one of the values
in the 1list

dr.list_available_variables({"TAG_NAME": ["TAG_VALUE1l",
"TAG_VALUE2"]1})

# gets all with matching tag name, irrespective of value
dr.list_available_variables({"TAG_NAME": None})

# AND query between the two tags (i.e. both need to match)
dr.list_available_variables({"TAG_NAME": "TAG_VALUE",
"TAG_NAME2": "TAG_VALUE2"}

Parameters:

tag_filter - A dictionary of tags to filter by. Only nodes
matching the tags and their values will be returned. If
the value for a tag is None, then we will return all nodes
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with that tag. If the value is non-empty we will return all
nodes with that tag and that value.

Returns:

list of available variables (i.e. outputs).

materialize(*materializers: MaterializerFactory | ExtractorFactory, additional_vars: List[str |
Callable | HamiltonNode] = None, overrides: Dict[str, Any] = None, inputs: Dict[str, Any] =
None) - Tuple[Any, Dict[str, Any]]
Executes and materializes with ad-hoc materializers (to) and extractors (from_)This
does the following:

1. Creates a new graph, appending the desired materialization nodes and prepending
the desired extraction nodes

2. Runs the portion of the DAG upstream of the materialization nodes outputted, as
well as any additional nodes requested (which can be empty)

3. Returns a Tuple[Materialization metadata, additional vars result]

For instance, say you want to load data, process it, then materialize the output of a
node to CSV:

from hamilton import driver, base
from hamilton.io.materialization import to
dr = driver.Driver(my_module, {})
# foo, bar are pd.Series
metadata, result = dr.materialize(
from_.csv(
target="input_data",
path="./input.csv"

)

to.csv(
path="./output.csv"
id="foo_bar_csv",
dependencies=["foo", "bar"],
combine=base.PandasDataFrameResult()

b

additional_vars=["foo", "bar"]

The code above will do the following:
1. Load the CSV at “/input.csv” and inject it into he DAG as input_data

2. Run the nodes in the DAG on which “foo” and “bar” depend
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3. Materialize the dataframe with “foo” and “bar” as columns, saving it as a CSV file at
“/output.csv”. The metadata will contain any additional relevant information, and
result will be a dictionary with the keys “foo” and “bar” containing the original data.

Note that we pass in a ResultBuilder as the combine argument to to, as we may be
materializing several nodes. This is not relevant in from_ as we are only loading one
dataset.

additional_vars is used for debugging — E.G. if you want to both realize side-effects
and return an output for inspection. If left out, it will return an empty dictionary.

You can bypass the combine keyword for to if only one output is required. In this
circumstance “combining/joining” isn't required, e.g. you do that yourself in a function
and/or the output of the function can be directly used. In the case below the output
can be turned in to a CSV.

from hamilton import driver, base
from hamilton.io.materialization import to
dr = driver.Driver(my_module, {})
# foo, bar are pd.Series
metadata, _ = dr.materialize(
from_.csv(
target="input_data",
path="./input.csv"

Vs
to.csv(
path="./output.csv"
id="foo_bar_csv",
dependencies=["foo_bar_already_joined],
s

This will just save it to a csv.

Note that materializers can be any valid DataSaver — these have an isomorphic
relationship with the @save_to decorator, which means that any key utilizable in
save_to can be used in a materializer. The constructor arguments for a materializer
are the same as the arguments for @save_to, with an additional trick — instead of
requiring everything to be a source or value, you can pass in a literal, and it will be
interpreted as a value.

That said, if you want to parameterize your materializer based on input or some node
in the DAG, you can easily do that as well:

from hamilton import driver, base
from hamilton.function_modifiers import source
from hamilton.io.materialization import to
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dr = driver.Driver(my_module, {})
# foo, bar are pd.Series
metadata, result = dr.Materialize(
from_.csv(
target="input_data",
path=source("load_path")

e
to.csv(
path=source("save_path"),
id="foo_bar _csv",
dependencies=["foo", "bar"],
combine=base.PandasDataFrameResult(),
)
additional_vars=["foo", "bar"],
inputs={"save_path": "./output.csv"},

While this is a contrived example, you could imagine something more powerful. Say,
for instance, say you have created and registered a custom model_registry
materializer that applies to an argument of your model class, and requires
training_data to infer the signature. You could call it like this:

from hamilton import driver, base

from hamilton.function_modifiers import source

from hamilton.io.materialization import to

dr = driver.Driver(my_module, {})

metadata, _ = dr.Materialize(

to.model_registry(

training_data=source("training_data"),
id="foo_model_registry",
tags={"run_id" : ..., "training_date" : ..., ...},
dependencies=["foo_model"]

In this case, we bypass a result builder (as there’s only one model), the single node
we depend on gets saved, and we pass in the training data as an input so the
materializer can infer the signature.

You could also imagine a driver that loads up a model, runs inference, then saves the

result:

from hamilton import driver, base
from hamilton.function_modifiers import source
from hamilton.io.materialization import to

dr = driver.Driver(my_module, {})
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metadata, _ = dr.Materialize(
from_.model_registry(
target="input_model",
query_tags={
"training_date": ...,
model_version: ...,
}, # query based on run_id, model_version

e

to.csv(
path=source("save_path"),
id="save_inference_data",
dependencies=["inference_data"],

),

Note that the “from” extractor has an interesting property - it effectively functions as
overrides. This means that it can replace nodes within a DAG, short-circuiting their
behavior. Similar to passing overrides, but they are dynamically computed with the
DAG, rather than statically included from the beginning.

This is customizable through a few APIs:
1. Custom data savers ( Function modifiers)

2. Custom result builders
3. Custom data loaders ( Function modifiers)

If you find yourself writing these, please consider contributing back! We would love to
round out the set of available materialization tools.

Parameters:

- materializers - Materializer/extractors to use, created
with to.xyz or from.xyz

- additional_vars - Additional variables to return from
the graph

- overrides — Overrides to pass to execution

- inputs - Inputs to pass to execution

Returns:

Tuple[Materialization metadataldata, additional_vars
result]
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static normalize_adapter_input(adapter: BasePreDoAnythingHook |
BaseDoCheckEdgeTypesMatch | BaseDoValidatelnput | BaseValidateNode |
BaseValidateGraph | BasePostGraphConstruct | BasePostGraphConstructAsync |
BasePreGraphExecute | BasePreGraphExecuteAsync | BasePostTaskGroup |
BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn | BasePreTaskExecute
| BasePreTaskExecuteAsync | BasePreNodeExecute | BasePreNodeExecuteAsync |
BaseDoNodeExecute | BaseDoNodeExecuteAsync | BasePostNodeExecute |
BasePostNodeExecuteAsync | BasePostTaskExecute | BasePostTaskExecuteAsync |
BasePostGraphExecute | BasePostGraphExecuteAsync | BaseDoBuildResult |
List[BasePreDoAnythingHook | BaseDoCheckEdgeTypesMatch | BaseDoValidatelnput |
BaseValidateNode | BaseValidateGraph | BasePostGraphConstruct |
BasePostGraphConstructAsync | BasePreGraphExecute | BasePreGraphExecuteAsync |
BasePostTaskGroup | BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn
| BasePreTaskExecute | BasePreTaskExecuteAsync | BasePreNodeExecute |
BasePreNodeExecuteAsync | BaseDoNodeExecute | BaseDoNodeExecuteAsync |
BasePostNodeExecute | BasePostNodeExecuteAsync | BasePostTaskExecute |
BasePostTaskExecuteAsync | BasePostGraphExecute | BasePostGraphExecuteAsync |
BaseDoBuildResult] | LifecycleAdapterSet | None, use_legacy_adapter: bool = True) >
LifecycleAdapterSet

Normalizes the adapter argument in the driver to a list of adapters. Adds back the

legacy adapter if needed.

Note that, in the past, hamilton required a graph adapter. Now it is only required to be
included in the legacy case default behavior has been modified to handle anything a
result builder did.

Parameters:
- adapter - Adapter to include
- use_legacy_adapter - Whether to use the legacy
adapter. Defaults to True.
Returns:

A lifecycle adapter set.

raw_execute(final_vars: List[str], overrides: Dict[str, Any] = None,
display_graph: bool = False, inputs: Dict[str, Any] = None, _fn_graph: FunctionGraph = None)
- Dict[str, Any]

Raw execute function that does the meat of execute.

Don't use this entry point for execution directly. Always go through .execute() or
.materialize(). In case you are using .raw_execute() directly, please switch to .execute()
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using a base.DictResult(). Note: base.DictResult() is the default return of execute if you
are using the driver.Builder() class to create a Driver() object.

Parameters:
- final_vars - Final variables to compute
- overrides — Overrides to run.

- display_graph - DEPRECATED. DO NOT USE. Whether
or not to display the graph when running it

- inputs - Runtime inputs to the DAG

Returns:

validate_execution(final_vars: List[str | Callable | HamiltonNode], overrides: Dict[str, Any] =
None, inputs: Dict[str, Any] = None)
Validates execution of the graph. One can call this to validate execution,
independently of actually executing. Note this has no return — it will raise a ValueError
if there is an issue.

Parameters:
- final_vars - Final variables to compute
- overrides - Overrides to pass to execution.

- inputs - Inputs to pass to execution.

Raises:

ValueError - if any issues with executino can be
detected.

static validate_inputs(fn_graph: FunctionGraph, adapter: BasePreDoAnythingHooR |
BaseDoCheckEdgeTypesMatch | BaseDoValidatelnput | BaseValidateNode |
BaseValidateGraph | BasePostGraphConstruct | BasePostGraphConstructAsync |
BasePreGraphExecute | BasePreGraphExecuteAsync | BasePostTaskGroup |
BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn | BasePreTaskExecute
| BasePreTaskExecuteAsync | BasePreNodeExecute | BasePreNodeExecuteAsync |
BaseDoNodeExecute | BaseDoNodeExecuteAsync | BasePostNodeExecute |
BasePostNodeExecuteAsync | BasePostTaskExecute | BasePostTaskRExecuteAsync |
BasePostGraphExecute | BasePostGraphExecuteAsync | BaseDoBuildResult |
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List[BasePreDoAnythingHook | BaseDoCheckEdgeTypesMatch | BaseDoValidatelnput |
BaseValidateNode | BaseValidateGraph | BasePostGraphConstruct |
BasePostGraphConstructAsync | BasePreGraphExecute | BasePreGraphExecuteAsync |
BasePostTaskGroup | BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn
| BasePreTaskExecute | BasePreTaskExecuteAsync | BasePreNodeExecute |
BasePreNodeExecuteAsync | BaseDoNodeExecute | BaseDoNodeExecuteAsync |
BasePostNodeExecute | BasePostNodeExecuteAsync | BasePostTaskExecute |
BasePostTaskExecuteAsync | BasePostGraphExecute | BasePostGraphExecuteAsync |
BaseDoBuildResult] | LifecycleAdapterSet, user_nodes: Collection[Node], inputs: Dict[str,
Any] | None = None, nodes_set: Collection[Node] = None)

Validates that inputs meet our expectations. This means that: 1. The runtime inputs

don’t clash with the graph’s config 2. All expected graph inputs are provided, either in

config or at runtime

Parameters:
- fn_graph - The function graph to validate.
- adapter - The adapter to use for validation.

-user_nodes - The required nodes we need for
computation.

- inputs - the user inputs provided.

- nodes_set - the set of nodes to use for validation;
Optional.

validate_materialization(*materializers: MaterializerFactory, additional_vars: List[str |
Callable | HamiltonNode] = None, overrides: Dict[str, Any] = None, inputs: Dict[str, Any] =
None)
Validates materialization of the graph. Effectively .materialize() with a dry-run. Note
this has no return — it will raise a ValueError if there is an issue.

Parameters:

- materializers - Materializers to use, see the
materialize() function

- additional_vars - Additional variables to compute (in
addition to materializers)

- overrides - Overrides to pass to execution. Optional.

- inputs - Inputs to pass to execution. Optional.
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Raises:

ValueError - if any issues with materialization can be
detected.

visualize_execution(final_vars: List[str | Callable | HamiltonNode], output_file_path: str =
None, render_kwargs: dict = None, inputs: Dict[str, Any] = None, graphviz_kwargs: dict =
None, overrides: Dict[str, Any] = None, show_legend: bool = True, orient: str = 'LR’,
hide_inputs: bool = False, deduplicate_inputs: bool = False, show_schema: bool = True,
custom_style_function: Callable = None, bypass_validation: bool = False, keep_dot: bool =
False) - graphviz.Digraph | None

Visualizes Execution.

Note: overrides are not handled at this time.
Shapes:
- ovals are nodes/functions
- rectangles are nodes/functions that are requested as output

- shapes with dotted lines are inputs required to run the DAG.

Parameters:

- final_vars - the outputs we want to compute. They
will become rectangles in the graph.

- output_file_path - the full URI of path + file name to
save the dot file to. Eg ‘some/path/graph.dot.
Optional. No need to pass it in if you're in a Jupyter
Notebook.

- render_kwargs - a dictionary of values we’ll pass to
graphviz render function. Defaults to viewing. If you do
not want to view the file, pass in {view"False}. See
https://graphviz.readthedocs.io/en/stable/
api.html#tgraphviz.Graph.render for other options.

- inputs - Optional. Runtime inputs to the DAG.

- graphviz_kwargs - Optional. Kwargs to be passed to
the graphviz graph object to configure it. Eg
dict(graph_attr={‘ratio”: “1'}) will set the aspect ratio to
be equal of the produced image. See https://
graphviz.org/doc/info/attrs.html for options.


https://graphviz.readthedocs.io/en/stable/api.html#graphviz.Graph.render
https://graphviz.readthedocs.io/en/stable/api.html#graphviz.Graph.render
https://graphviz.org/doc/info/attrs.html
https://graphviz.org/doc/info/attrs.html
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- overrides - Optional. Overrides to the DAG.

-show_legend - If True, add a legend to the
visualization based on the DAG's nodes.

- orient - LR stands for “left to right”. Accepted values
are TB, LR, BT, RL. orient will be overwridden by the
value of graphviz_kwargs[‘graph_attr’][‘rankdir’] see
(https://graphviz.org/docs/attr-types/rankdir/)

- hide_inputs - If True, no input nodes are displayed.

- deduplicate_inputs - If True, remove duplicate input
nodes. Can improve readability depending on the
specifics of the DAG.

- show_schema - If True, display the schema of the DAG
if nodes have schema data provided

- custom_style_function - Optional. Custom style
function.

- keep_dot - If true, produce a DOT file (ref: https://
graphviz.org/doc/info/lang.html)

Returns:

the graphviz object if you want to do more with it. If
returned as the result in a Jupyter Notebook cell, it will
render.

visualize_materialization(*materializers: MaterializerFactory | ExtractorFactory,
output_file_path: str = None, render_kwargs: dict = None, additional_vars: List[str | Callable
| HamiltonNode] = None, inputs: Dict[str, Any] = None, graphviz_Rkwargs: dict = None,
overrides: Dict[str, Any] = None, show_legend: bool = True, orient: str = 'LR’, hide_inputs:
bool = False, deduplicate_inputs: bool = False, show_schema: bool = True,
custom_style_function: Callable = None, bypass_validation: bool = False, keep_dot: bool =
False) -» graphviz.Digraph | None

Visualizes materialization. This helps give you a sense of how materialization will

impact the DAG.

Parameters:

- materializers - Materializers/Extractors to use, see
the materialize() function


https://graphviz.org/docs/attr-types/rankdir/
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- additional_vars - Additional variables to compute (in
addition to materializers)

- output_file_path - Path to output file. Optional. Skip if
in a Jupyter Notebook.

-render_kwargs - Arguments to pass to render.
Optional.

- inputs - Inputs to pass to execution. Optional.

- graphviz_kwargs - Arguments to pass to graphviz.
Optional.

- overrides - Overrides to pass to execution. Optional.

-show_legend - If True, add a legend to the
visualization based on the DAG's nodes.

- orient - LR stands for “left to right”. Accepted values
are TB, LR, BT, RL. orient will be overwridden by the
value of graphviz_kwargs[‘graph_attr’][‘rankdir’] see
(https://graphviz.org/docs/attr-types/rankdir/)

- hide_inputs - If True, no input nodes are displayed.

- deduplicate_inputs - If True, remove duplicate input
nodes. Can improve readability depending on the
specifics of the DAG.

- show_schema - If True, show the schema of the
materialized nodes if nodes have schema metadata
attached.

- custom_style_function - Optional. Custom style
function.

- bypass_validation - If True, bypass validation.
Optional.
Returns:

The graphviz graph, if you want to do something with it

visualize_path_between(upstream_node_name: str, downstream_node_name: str,
output_file_path: str | None = None, render_kwargs: dict = None, graphviz_kwargs: dict =
None, strict_path_visualization: bool = False, show_legend: bool = True, orient: str = 'LR',


https://graphviz.org/docs/attr-types/rankdir/
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hide_inputs: bool = False, deduplicate_inputs: bool = False, show_schema: bool = True,
custom_style_function: Callable = None, keep_dot: bool = False) - graphviz.Digraph | None
Visualizes the path between two nodes.

This is useful for debugging and understanding the path between two nodes.

Parameters:

- upstream_node_name - the name of the node that
we want to start from.

- downstream_node_name - the name of the node
that we want to end at.

- output_file_path - the full URI of path + file name to
save the dot file to. E.g. ‘some/path/graph.dot’ Pass in
None to skip saving any file.

- render_kwargs - a dictionary of values we'll pass to
graphviz render function. Defaults to viewing. If you do
not want to view the file, pass in {'view’False}.

- graphviz_kwargs - Kwargs to be passed to the
graphviz graph object to configure it. Eg
dict(graph_attr={'ratio’: “1'}) will set the aspect ratio to
be equal of the produced image.

- strict_path_visualization - If True, only the nodes in
the path will be visualized. If False, the nodes in the
path and their dependencies, i.e. parents, will be
visualized.

-show_legend - If True, add a legend to the
visualization based on the DAG's nodes.

- orient - LR stands for “left to right”. Accepted values
are TB, LR, BT, RL. orient will be overwridden by the
value of graphviz_kwargs[‘graph_attr'][‘rankdir’] see
(https://graphviz.org/docs/attr-types/rankdir/)

- hide_inputs - If True, no input nodes are displayed.

- deduplicate_inputs - If True, remove duplicate input
nodes. Can improve readability depending on the
specifics of the DAG.


https://graphviz.org/docs/attr-types/rankdir/
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- show_schema - If True, display the schema of the DAG
if nodes have schema data provided

- custom_style_function - Optional. Custom style
function.

- keep_dot - If true, produce a DOT file (ref: https://
graphviz.org/doc/info/lang.html)
Returns:

graphviz object.

Raises:

ValueError - if the upstream or downstream node
names are not found in the graph, or there is no path
between them.

what_is_downstream_of(*node_names: str) - ListiHamiltonNode]
Tells you what is downstream of this function(s), i.e. node(s).

Parameters:

node_names - names of function(s) that are starting
points for traversing the graph.

Returns:

list of “variables” (i.e. nodes), inclusive of the function
names, that are downstream of the passed in function
names.

what_is_the_path_between(upstream_node_name: str, downstream_node_name: str) -
ListfHamiltonNode]
Tells you what nodes are on the path between two nodes.

Note: this is inclusive of the two nodes, and returns an unsorted list of nodes.

Parameters:

- upstream_node_name - the name of the node that
we want to start from.


https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html
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- downstream_node_name - the name of the node
that we want to end at.

Returns:
Nodes representing the path between the two nodes,
inclusive of the two nodes, unsorted. Returns empty list
if no path exists.
Raises:
ValueError - if the upstream or downstream node name
is not in the graph.

what_is_upstream_of(*node_names: str) - List{(HamiltonNode]
Tells you what is upstream of this function(s), i.e. node(s).
Parameters:
node_names - names of function(s) that are starting
points for traversing the graph backwards.
Returns:
list of “variables” (i.e. nodes), inclusive of the function
names, that are upstream of the passed in function
names.

DefaultGraphExecutor

This is the default graph executor. It can handle limited parallelism through graph adapters, and
conducts execution using a simple recursive depth first traversal. Note this cannot handle
parallelism with Parallelizable[]/Collect[]. Note that this is only exposed through the Builder (and
it comes default on Driver instantiation) - it is here purely for documentation, and you should
never need to instantiate it directly.

class hamilton.driver.DefaultGraphExecutor(adapter: LifecycleAdapterSet | None = None)
__init__(adapter: LifecycleAdapterSet | None = None)

Constructor for the default graph executor.

Parameters:
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adapter - Adapter to use for execution (optional).

execute(fg: FunctionGraph, final_vars: List[str], overrides: Dict[str, Any],

inputs: Dict[str, Any], run_id: str) - Dict[str, Any]
Basic executor for a function graph. Does no task-based execution, just does a DFS
and executes the graph in order, in memory.

validate(nodes_to_execute: List[Node])
The default graph executor cannot handle parallelizable[]/collect[] nodes.

Parameters:

nodes_to_execute

Raises:

InvalidExecutorException - if the graph contains
parallelizable[]/collect[] nodes.

TaskBasedGraphExecutor

This is a task based graph executor. It can handle parallelism with the Parallelizable/Collect
constructs, allowing it to spawn dynamic tasks and execute them as a group. Note that this is only
exposed through the Builder when called with
enable_dynamic_execution(allow_experimental_mode: bool) - it is here purely for documentation,
and you should never need to instantiate it directly.

class hamilton.driver.TaskBasedGraphExecutor(execution_manager: ExecutionManager,
grouping_strategy: GroupingStrategy, adapter: LifecycleAdapterSet)
__init__(execution_manager: ExecutionManager, grouping_strategy: GroupingStrategy,
adapter: LifecycleAdapterSet)
Executor for task-based execution. This enables grouping of nodes into tasks, as well
as parallel execution/dynamic spawning of nodes.

Parameters:

- execution_manager - Utility to assign task executors
to node groups

- grouping_strategy - Utility to group nodes into tasks

- result_builder - Utility to build the final result



417 Drivers

execute(fg: FunctionGraph, final_vars: List[str], overrides: Dict[str, Any],
inputs: Dict[str, Any], run_id: str) - Dict[str, Any]
Executes a graph, task by task. This blocks until completion.

This does the following: 1. Groups the nodes into tasks 2. Creates an execution state
and a results cache 3. Runs it to completion, populating the results cache 4. Returning
the results from the results cache

validate(nodes_to_execute: List[Node])
Currently this can run every valid graph

AsyncDriver
Use this driver in an async context. E.g. for use with FastAPI.

class hamilton.async_driver.AsyncDriver(config, *modules, result_builder: ResultMixin [ None =
None, adapters: List[BasePreDoAnythingHook | BaseDoCheckEdgeTypesMatch |
BaseDoValidatelnput | BaseValidateNode | BaseValidateGraph | BasePostGraphConstruct |
BasePostGraphConstructAsync | BasePreGraphExecute | BasePreGraphExecuteAsync |
BasePostTaskGroup | BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn |
BasePreTaskExecute | BasePreTaskExecuteAsync | BasePreNodeExecute |
BasePreNodeExecuteAsync | BaseDoNodeExecute | BaseDoNodeExecuteAsync |
BasePostNodeExecute | BasePostNodeExecuteAsync | BasePostTasRExecute |
BasePostTaskExecuteAsync | BasePostGraphExecute | BasePostGraphExecuteAsync |
BaseDoBuildResult] = None, allow_module_overrides: bool = False)

Async driver. This is a driver that uses the AsyncGraphAdapter to execute the graph.

dr = async_driver.AsyncDriver({}, async_module,
result_builder=base.DictResult())
df = await dr.execute([...], inputs=...)

__init__(config, *modules, result_builder: ResultMixin | None = None, adapters:
List[BasePreDoAnythingHook | BaseDoCheckEdgeTypesMatch | BaseDoValidatelnput |
BaseValidateNode | BaseValidateGraph | BasePostGraphConstruct |
BasePostGraphConstructAsync | BasePreGraphExecute | BasePreGraphExecuteAsync |
BasePostTaskGroup | BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn
| BasePreTaskExecute | BasePreTaskExecuteAsync | BasePreNodeExecute |
BasePreNodeExecuteAsync | BaseDoNodeExecute | BaseDoNodeExecuteAsync |
BasePostNodeExecute | BasePostNodeExecuteAsync | BasePostTaskExecute |
BasePostTaskExecuteAsync | BasePostGraphExecute | BasePostGraphExecuteAsync |
BaseDoBuildResult] = None, allow_module_overrides: bool = False)

Instantiates an asynchronous driver.

You will also need to call ainit to initialize the driver if you have any hooks/adapters.
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Note that this is not the desired APl - vyou should be using the
hamilton.async_driver.Builder class to create the driver.

This will only (currently) work properly with asynchronous lifecycle hooks, and does
not support methods or validators. You can still pass in synchronous lifecycle hooks,
but they may behave strangely.

Parameters:
- config - Config to build the graph
- modules - Modules to crawl for fns/graph nodes

- result_builder - Results mixin to compile the graph’s
final results. TBD whether this should be included in
the long run.

- adapters — Adapters to use for lifecycle methods.

- allow_module_overrides - Optional. Same named
functions get overridden by later modules. The order
of listing the modules is important, since later ones
will overwrite the previous ones. This is a global call
affecting all imported modules. See https://
github.com/apache/hamilton/tree/main/examples/
module_overrides for more info.

async ainit() > AsyncDriver

Initializes the driver when using async. This only exists for backwards compatibility. In
Hamilton 2.0, we will be using an asynchronous constructor. See https://dev.to/
akarshan/asynchronous-python-magic-how-to-create-awaitable-constructors-with-
asyncmixin-18j5.

capture_constructor_telemetry(error: str | None, modules: Tuple[ModuleType], config:
Dict[str, Any], adapter: HamiltonGraphAdapter)

Ensures we capture constructor telemetry the right way in an async context.

This is a simpler wrapper around what's in the driver class.

Parameters:
- error - sanitized error string, if any.
- modules - tuple of modules to build DAG from.

- config - config to create the driver.


https://github.com/apache/hamilton/tree/main/examples/module_overrides
https://github.com/apache/hamilton/tree/main/examples/module_overrides
https://github.com/apache/hamilton/tree/main/examples/module_overrides
https://dev.to/akarshan/asynchronous-python-magic-how-to-create-awaitable-constructors-with-asyncmixin-18j5
https://dev.to/akarshan/asynchronous-python-magic-how-to-create-awaitable-constructors-with-asyncmixin-18j5
https://dev.to/akarshan/asynchronous-python-magic-how-to-create-awaitable-constructors-with-asyncmixin-18j5
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- adapter - adapter class object.

async execute(final_vars: List[str], overrides: Dict[str, Any] = None, display_graph: bool =
False, inputs: Dict[str, Any] = None) - Any
Executes computation.

Parameters:

- final_vars - the final list of variables we want to
compute.

- overrides — values that will override “nodes” in the
DAG.

- display_graph - DEPRECATED. Whether we want to
display the graph being computed.

- inputs - Runtime inputs to the DAG.

Returns:

an object consisting of the variables requested,
matching the type returned by the GraphAdapter. See
constructor for how the GraphAdapter is initialized. The
default one right now returns a pandas dataframe.

async raw_execute(final_vars: List[str], overrides: Dict[str, Any] = None, display_graph: bool
= False, inputs: Dict[str, Any] = None, _fn_graph: FunctionGraph = None) - Dict[str, Any]
Executes the graph, returning a dictionary of strings (node keys) to final results.

Parameters:
- final_vars - Variables to execute (+ upstream)
- overrides — Overrides for nodes

- display_graph - whether or not to display graph - this
is not supported.

- inputs - Inputs for DAG runtime calculation
- _fn_graph - Function graph for compatibility with

superclass — unused

Returns:
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A dict of key -> result

Async Builder
Builds a driver in an async context — use await builder....build() .

class hamilton.async_driver.Builder
Builder for the async driver. This is equivalent to the standard builder, but has a more
limited API. Note this does not support dynamic execution or materializers (for now).

Here is an example of how you might use it to get the tracker working:

from hamilton_sdk import tracker

tracker_async = adapters.AsyncHamiltonTracker(
project_id=1,
username="elijah",
dag_name="async_tracker",

)

dr = (
await async_driver.Builder()
.with_modules(async_module)
.with_adapters(tracking_async)
.build()

)

__init__()

Constructs a driver builder. No parameters as you call methods to set fields.

async build()
Builds the async driver. This also initializes it, hence the async definition. If you don't
want to use async, you can use build_without_init and call ainit later, but we
recommend using this in an asynchronous lifespan management function (E.G. in
fastAPI), or something similar.

Returns:

The fully
build_without_init() » AsyncDriver
Allows you to build the async driver without initialization. Use this at your own risk -

we highly recommend calling .ainit on the final result.

Returns:
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enable_dynamic_execution(*, allow_experimental_mode: bool = False) - Builder

Enables the Parallelizable[] type, which in turn enables: 1. Grouped execution into
tasks 2. Parallel execution :return: self

with_adapter(adapter: HamiltonGraphAdapter) - Builder
Sets the adapter to use.

Parameters:

adapter - Adapter to use.

Returns:

self

with_materializers(*materializers: ExtractorFactory | MaterializerFactory) - Builder

Add materializer nodes to the Driver The generated nodes can be referenced by name
in .execute()

Parameters:

materializers - materializers to add to the dataflow

Returns:

self

Custom Driver

If you have a use case for a custom Driver, tell us on Slack or via a GitHub issues. Knowing about

your use case and talking through help ensures we aren’t duplicating effort, and that it'll be using
part of the APl we don't intend to change.


https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://github.com/apache/hamilton/issues/new?assignees=&labels=&projects=&template=feature_request.md&title=

oY) Caching

Caching

Reference

Caching logic

Caching Behavior

class hamilton.caching.adapter.CachingBehavior(value)
Behavior applied by the caching adapter

DEFAULT:
Try to retrieve result from cache instead of executing the node. If the node is
executed, store the result. Compute the result data version and store it too.

RECOMPUTE:
Don't try to retrieve result from cache and always execute the node. Otherwise,
behaves as default. Useful when nodes are stochastic (e.g., model training) or interact
with external components (e.g, read from database).

DISABLE:
Node is executed as if the caching feature wasn’t enabled. It never tries to retrieve
results. Results are never stored nor versioned. Behaves like IGNORE, but the node
remains a dependency for downstream nodes. This means downstream cache lookup
will likely fail systematically (i.e., if the cache is empty).

IGNORE:
Node is executed as if the caching feature wasn't enable. It never tries to retrieve
results. Results are never stored nor versioned. IGNORE means downstream nodes
will ignore this node as a dependency for lookup. Ignoring clients and connections
can be useful since they shouldn't directly impact the downstream results.

classmethod from_string(string: str) - CachingBehavior
Create a caching behavior from a string of the enum value. This is leveraged by the
hamilton.lifecycle.caching.SmartCacheAdapter and the

hamilton.function_modifiers.metadata.cache decorator.
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CachingBehavior.from_string("recompute")

acache decorator

'ignore’, 'disable'] | None = None, format: Literal['json’, 'file’, 'pickle’, 'parquet’, 'csv', ‘feather, 'orc’,
‘excel’] | str | None = None, target_: str | Collection[str] | None | EllipsisType = Ellipsis)
BEHAVIOR_KEY = 'cache.behavior’
FORMAT_KEY = 'cache.format'

class hamilton.function_modifiers.metadata.cache(*, behavior: Literal['default’, 'recompute’,

Literal['json’, 'file', 'pickle’, 'parquet’, 'csv', 'feather’, 'orc’, 'excel’] | str | None = None, target_:
str | Collection[str] | None | EllipsisType = Ellipsis)
The @cache decorator can define the behavior and format of a specific node.

This feature is implemented via tags, but that could change. Thus you should not rely
on these tags for other purposes.

acache(behavior="recompute", format="parquet")
def raw_data() -> pd.DataFrame:

If the function uses other function modifiers and define multiple nodes, you can set

target_ to specify which nodes to cache. The following only caches the performance
node.

acache(format="json", target_="performance")
dextract_fields(trained_model=LinearRegression,
performance: dict)
def model_training() -> dict:

H ...

performance = {"rmse": 0.1, "mae": 0.2}

return {"trained_model": trained_model, "performance":
performance}

Parameters:

- behavior - The behavior of the cache. This can be one
of the following: * default: caching is enabled *
recompute: always compute the node instead of
retrieving * ignore: the data version won't be part of
downstream keys * disable: act as if caching wasn't
enabled.
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- format - The format of the cache. This can be one of
the following: * json: JSON format * file: file format *
pickle: pickle format * parquet: parquet format * csv:
csv format * feather: feather format * orc: orc format *
excel: excel format

- target_ - Target nodes to decorate. This can be one of
the following: * None: tag all nodes outputted by this
that are “final” (E.g. do not have a node outputted by
this that depend on them) * Ellipsis (...): tag all nodes
outputted by this * Collection[str]: tag only the nodes
with the specified names * str: tag only the node with

the specified name

decorate_node(node_: Node) -» Node
Decorates the nodes with the cache tags.

Parameters:

node - Node to decorate

Returns:

Copy of the node, with tags assigned

Logging

class hamilton.caching.adapter.CachingEvent(run_id: str, actor: ~typing.Literal['adapter,
'metadata_store!, 'result_store'], event_type: ~hamilton.caching.adapter.CachingEventType,

node_name: str, task_id: str | None = None, msg: str | None = None, value: ~typing.Any | None =

None, timestamp: float = <factory>)
Event logged by the caching adapter

__init__(run_id: str, actor: ~typing.Literal['adapter, 'metadata_store’, 'result_store'],

event_type: ~hamilton.caching.adapter.CachingEventType, node_name: str, task_id: str |
None = None, msg: str | None = None, value: ~typing.Any | None = None, timestamp: float =

<factory>) > None

class hamilton.caching.adapter.CachingEventType(value)
Event types logged by the caching adapter
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Adapter

class hamilton.caching.adapter.HamiltonCacheAdapter(path: str | Path = “hamilton_cache’,
metadata_store: MetadataStore | None = None, result_store: ResultStore | None = None, default:
Literal[True] | Collection[str] | None = None, recompute: Literal[True] | Collection[str] | None =
None, ignore: Literal[True] | Collection[str] | None = None, disable: Literal[True] | Collection[str] |
None = None, default_behavior: Literal['default’, 'recompute’, 'disable’, 'ignore'] | None = None,
default_loader_behavior: Literal['default’, 'recompute’, 'disable’, 'ignore'] | None = None,
default_saver_behavior: Literal['default’, 'recompute’, 'disable’, 'ignore'] | None = None,
log_to_file: bool = False, **kwargs)

Adapter enabling Hamilton's caching feature through Builder.with_cache()

from hamilton import driver
import my_dataflow

dr = (
driver.Builder()
.with_modules(my_dataflow)
.with_cache()
.build()

)

# then, you can access the adapter via
dr.cache

__init__(path: str | Path = "hamilton_cache', metadata_store: MetadataStore | None = None,
result_store: ResultStore | None = None,
default: Literal[True] | Collection[str] | None = None, recompute: Literal[True] |
Collection[str] | None = None, ignore: Literal[True] | Collection[str] | None = None, disable:
Literal[True] | Collection[str] | None = None, default_behavior: Literal['default’, 'recompute’,
'disable’, 'ignore'] | None = None, default_loader_behavior: Literal['default’, 'recompute’,
'disable’, 'ignore'] | None = None, default_saver_behavior: Literal['default’, 'recompute’,
'disable’, 'ignore'] | None = None, log_to_file: bool = False, **kwargs)

Initialize the cache adapter.

Parameters:

- path - path where the cache metadata and results
will be stored

- metadata_store - BaseStore handling metadata for
the cache adapter

- result_store - BaseStore caching dataflow execution
results



426 Caching

- default - Set caching behavior to DEFAULT for
specified node names. If True, apply to all nodes.

- recompute - Set caching behavior to RECOMPUTE for
specified node names. If True, apply to all nodes.

- ignore - Set caching behavior to IGNORE for specified
node names. If True, apply to all nodes.

- disable - Set caching behavior to DISABLE for
specified node names. If True, apply to all nodes.

- default_behavior - Set the default caching behavior.

- default_loader_behavior - Set the default caching
behavior DatalLoader nodes.

- default_saver_behavior - Set the default caching
behavior DataSaver nodes.

- log_to_file - If True, append cache event logs as they
happen in JSONL format.

do_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =

None, **future_kwargs)
Try to retrieve stored result from previous executions or execute the node.

Use the previously created cache_key to retrieve the data_version from memory or
the metadata_store. If data_version is retrieved try to retrieve the result. If it fails,
execute the node. Else, execute the node.

get_cache_key(run_id: str, node_name: str, task_id: str | None = None) - str | S
Get the cache_key stored in-memory for a specific run_id, node_name, and
task_id .

This method is public-facing and can be used directly to inspect the cache.

Parameters:
- run_id - |d of the Hamilton execution run.

- node_name - Name of the node associated with the
cache key. node_name is a unique identifier if task-
based execution is not used.
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- task_id - Id of the task when task-based execution is
used. Then, the tuple (node_name, task_id) is a
unique identifier.

Returns:

The cache key if it exists, otherwise return a sentinel
value.

from hamilton import driver
import my_dataflow

dr =
driver.Builder().with_modules(my_dataflow).with_cache().build()
dr.execute(...)

dr.cache.get_cache_key(run_id=dr.last_run_id,

node_name="my_node", task_id=None)

get_data_version(run_id: str, node_name: str, cache_Rey: str | None = None, task_id: str |
None = None) - str | S
Get the data_version for a specific run_id, node_name, and task_id .

This method is public-facing and can be used directly to inspect the cache. This will
check data versions stored both in-memory and in the metadata store.

Parameters:
- run_id - |d of the Hamilton execution run.

- node_name - Name of the node associated with the
data version. node_name is a unique identifier if task-
based execution is not used.

- task_id - Id of the task when task-based execution is
used. Then, the tuple (node_name, task_id) is a
unique identifier.

Returns:

The data version if it exists, otherwise return a sentinel
value.

.code-block: python
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from hamilton import driver import my_dataflow

dr = driverBuilder().with_modules(my_dataflow).with_cache().build()
drexecute(...)

dr.cache.get_data_version(run_id=dr.last_run_id, node_name="my_node”,
task_id=None)

property last_run_id
Run id of the last started run. Not necessarily the last to complete.

logs(run_id: str | None = None, level: Literal['debug’, 'info'] = 'info") - dict
Execution logs of the cache adapter.

Parameters:

-run_id - If None, return all logged runs. If provided a
run_id, group logs by node.

- level - If "debug" log all events. If "info" only log if
result is retrieved or executed.

Returns:

a mapping between node/task and a list of logged
events

from hamilton import driver
import my_dataflow

dr =
driver.Builder().with_modules(my_dataflow).with_cache().build()
dr.execute(...)

dr.execute(...)

all_logs = dr.cache.logs()

# all_logs is a dictionary with run_ids as keys and lists of
CachingEvent as values.

# {

# run_id_1: [CachingEvent(...), CachingEvent(...)],

# run_id_2: [CachingEvent(...), CachingEvent(...)],
# }

run_logs = dr.cache.logs(run_id=dr.last_run_id)

# run_logs are keyed by "~ “node_name "
# {node_name: [CachingEvent(...), CachingEvent(...)], ...}
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# or "~ (node_name, task_id) "~ if task-based execution 1is

used.
# {(node_name_1, task_id_1): [CachingEvent(...),
CachingEvent(...)], ...}

post_node_execute(*, run_id: str, node_: Node, result: str | None, success: bool = True,
error: Exception | None = None, task_id: str | None = None, **future_kwargs)
Get the cache_key and data_version stored in memory (respectively from
pre_node_execute and do_node_execute) and store the result in result_store if it
doesn't exist.

pre_graph_execute(*, run_id: str, graph: FunctionGraph, final_vars: List[str], inputs: Dict[str,

Any], overrides: Dict[str, Any])
Set up the state of the adapter for a new execution.

Most attributes need to be keyed by run_id to prevent potential conflicts because the
same adapter instance is shared between across all Driver.execute() calls.

pre_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str [ None =
None, **future_kwargs)
Before node execution or retrieval, create the cache_key and set it in memory. The
cache_key is created based on the node’s code version and its dependencies’ data

versions.

Collecting data_version for upstream dependencies requires handling special cases
when task-based execution is used: - If the current node is COLLECT , the dependency
annotated with Collect[] needs to be versioned item by item instead of versioning
the full container. This is because the collect order is inconsistent. - If the current
node is INSIDE and the dependency is EXPAND, this means the kwargs dictionary
contains a single item. We need to version this individual item because it will not be
available from “inside” the branch for some executors (multiprocessing,
multithreading) because they lose access to the data_versions of OUTSIDE nodes
stored in self.data_versions.

resolve_behaviors(run_id: str) - Dict[str, CachingBehavior]
Resolve the caching behavior for each node based on the @cache decorator and the
Builder.with_cache() parameters for a specific run_id.

This is a user-facing method.

Behavior specified via Builder.with_cache() have precedence. If no parameters are
specified, the cachingBehavior.DEFAULT is used. If a node is Parallelizable (i.e,
@expand ), the cachingBehavior is set to CachingBehavior.RECOMPUTE to ensure the
yielded items are versioned individually. Internally, this uses the FunctionGraph
stored for each run_id and logs the resolved caching behavior for each node.
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Parameters:

run_id - |d of the Hamilton execution run.

Returns:

A dictionary of {node name: caching behavior} .

resolve_code_versions(run_id: str, final_vars: List[str] | None = None, inputs: Dict[str, Any] |
None = None, overrides: Dict[str, Any] | None = None) - Dict[str, str]
Resolve the code version for each node for a specific run_id .

This is a user-facing method.

If final_vars is None, all nodes will be versioned. If final_vars is provided, the
inputs and overrides are used to determine the execution path and only version

the code for these nodes.

Parameters:
- run_id - |d of the Hamilton execution run.
- final_vars - Nodes requested for execution.
- inputs - Input node values.

- overrides — Override node values.

Returns:

A dictionary of {node name: code version} .

version_code(node_name: str, run_id: str | None = None) - str
Create a unique code version for the source code defining the node

version_data(result: Any, run_id: str = None) > str
Create a unique data version for the result

This is a user-facing method.

view_run(run_id: str | None = None, output_file_path: str | None = None)
View the dataflow execution, including cache hits/misses.
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Parameters:

-run_id - If None, view the last run. If provided a
run_id, view that run.

- output_file_path - If provided a path, save the
visualization to a file.

from hamilton import driver
import my_dataflow

dr =
driver.Builder().with_modules(my_dataflow).with_cache().build()

# execute 3 times
dr.execute(...)
dr.execute(...)
dr.execute(...)

# view the last run

dr.cache.view_run()

# this 1s equivalent to
dr.cache.view_run(run_id=dr.last_run_id)

# get a specific run id
run_id = dr.cache.run_ids[1]
dr.cache.view_run(run_id=run_id)

Quirks and limitations

Caching is a large and complex feature. This section is an attempt to list quirks and limitations,
known and theoretical, to help debugging and guide feature development

- The standard library includes a lot of types which are not primitives. Thus, Apache Hamilton
might not be supporting them explicitly. It should be simple to add, so ping us if you need it.

- The ResultStore could be architectured better to support custom formats. Right now, we use a
DataSaver to produce the .parquet file and we pickle the Dataloader for later retrieval. Then,
the metadata and result stores are completely unaware of the .parquet file making it difficult
to handle cache eviction.

-When a function with default parameter values passes through lifecycle hooks, the default
values are not part of the node_kwargs. They need to be retrieved manually from the
node.Node object.
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- supporting the Apache Hamilton AsyncDriver would require making the adapter async, but
also the stores. A potential challenge is ensuring that you can use the same cache (i.e., same
SQLite db and filesystem) for both sync and async drivers.

- If the @cache allows to specify the format (e.g, json, parquet) we probably want
.with_cache() to support the same feature.

- Apache Hamilton allows a single do_node_execute() hook. Since the caching feature uses it, it

is currently incompatible with other adapters leveraging it ( PDBDebugger, CacheAdapter
(deprecated), GracefulErrorAdapter (somewhat redundant with caching), DiskCacheAdapter
(deprecated), NarwhalsAdapter (could be refactored))

- the presence of MD5 hashing can be seen as a security risk and prevent adoption. read more in
DVC issues

-when hitting the base case of fingerprinting.hash_value() we return the constant
UNHASHABLE_VALUE . If the adapter receives this value, it will append a random UUID to it. This is
to prevent collision between unhashable types. This data_version is no longer deterministic,
but the value can still be retrieved or be part of another node’s cache_key .

- having @functools.singledispatch(object) allows to override the base case of hash_value()
because it will catch all types.

Data versioning

This module contains hashing functions for Python objects. It uses functools.singledispatch to
allow specialized implementations based on type. Singledispatch automatically applies the most
specific implementation

This module houses implementations for the Python standard library. Supporting all types is
considerable endeavor, so we'll add support as types are requested by users.

Otherwise, 3rd party types can be supported via the h_databackends module. This registers
abstract types that can be checked without having to import the 3rd party library. For instance,
there are implementations for pandas.DataFrame and polars.DataFrame despite these libraries not
being imported here.

IMPORTANT all container types that make a recursive call to hash_value or a specific
implementation should pass the depth parameter to prevent RecursionError.

hamilton.caching.fingerprinting.hash_bytes(obj, *args, **kwargs) - str
Convert the primitive to a string and hash it

Primitive type returns a hash and doesn’t have to handle depth.


https://github.com/iterative/dvc/issues/3069
https://github.com/iterative/dvc/issues/3069
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hamilton.caching.fingerprinting.hash_mapping(obj, *, ignore_order: bool = True, depth: int = 0,
**Rwargs) - str
Hash each key then its value.

The mapping is always sorted first because order shouldn't matter in a mapping.

NOTE Since Python 3.7, dictionary store insertion order. However, this function assumes that
they key order doesn't matter to uniquely identify the dictionary.

{"key": 3, "key2": 13}
{"key2": 13, "key": 3}

foo
bar

hash_mapping(foo) == hash_mapping(bar)
hamilton.caching.fingerprinting.hash_none(obj, *args, **kwargs) - str
Hash for None is <none>
Primitive type returns a hash and doesn’t have to handle depth.

hamilton.caching.fingerprinting.hash_numpy_array(obj, *args, depth: int = 0, **kwargs) > str
Get the bytes representation of the array raw data and hash it.

Might not be ideal because different higher-level numpy objects could have the same
underlying array representation (e.g., masked arrays). Unsure, but it's an area to investigate.

hamilton.caching.fingerprinting.hash_pandas_obj(obj, *args, depth: int = 0, **kwargs) > str
Convert a pandas dataframe, series, or index to a dictionary of {index: row_hash} then hash
it.

Given the hashing for mappings, the physical ordering or rows doesn’'t matter. For example,
if the index is a date, the hash will represent the {date: row_hash}, and won’t preserve how
dates were ordered in the DataFrame.

hamilton.caching.fingerprinting.hash_polars_column(obj, *args, depth: int = 0, **kwargs) > str
Promote the single Series to a dataframe and hash it

hamilton.caching.fingerprinting.hash_polars_dataframe(obj, *args, depth: int = 0, **kwargs) - str
Convert a polars dataframe, series, or index to a list of hashes then hash it.

hamilton.caching.fingerprinting.hash_primitive(obj, *args, **kwargs) - str
Convert the primitive to a string and hash it

Primitive type returns a hash and doesn’t have to handle depth.

hamilton.caching.fingerprinting.hash_repr(obj, *args, **kwargs) - str
Use the built-in repr() to get a string representation of the object and hash it.
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While .__repr__() might not be implemented for all classes, the function repr() will handle it,
along with exceptions, to always return a value.

Primitive type returns a hash and doesn’t have to handle depth.

hamilton.caching.fingerprinting.hash_sequence(obj, *args, depth: int = 0, **kwargs) - str
Hash each object of the sequence.

Orders matters for the hash since orders matters in a sequence.

hamilton.caching.fingerprinting.hash_set(obj, *args, depth: int = 0, **kwargs) - str
Hash each element of the set, then sort hashes, and create a hash of hashes.

For the same objects in the set, the hashes will be the same.

hamilton.caching.fingerprinting.hash_unordered_mapping(obj, *args, depth: int = 0, **kwargs) -
str
When hashing an unordered mapping, the two following dict have the same hash.

{"key": 3, "key2": 13}
{"key2": 13, "key": 3}

foo
bar

hash_mapping(foo) == hash_mapping(bar)

hamilton.caching.fingerprinting.hash_value(obj, *args, depth=0, **kwargs) - str
hamilton.caching.fingerprinting.hash_value(obj: None, *args, **kwargs) - str
hamilton.caching.fingerprinting.hash_value(obj: bool, *args, **kwargs) - str
hamilton.caching.fingerprinting.hash_value(obj: float, *args, **kwargs) - str
hamilton.caching.fingerprinting.hash_value(obj: int, *args, **kwargs) - str
hamilton.caching.fingerprinting.hash_value(obj: str, *args, **kwargs) > str
hamilton.caching.fingerprinting.hash_value(obj: bytes, *args, **kwargs) - str
hamilton.caching.fingerprinting.hash_value(obj: Sequence, *args, depth: int = 0, **kwargs) - str
hamilton.caching.fingerprinting.hash_value(obj:
= 0, **kwargs) > str
hamilton.caching.fingerprinting.hash_value(obj: Set, *args, depth: int = 0, **kwargs) - str
hamilton.caching.fingerprinting.hash_value(obj: AbstractPandasColumn, *args, depth: int = 0,

Mapping, *, ignore_order: bool = True, depth: int

**Rwargs) > str

hamilton.caching.fingerprinting.hash_value(obj: AbstractPandasDataFrame, *args, depth: int = 0,
**Rwargs) - str

hamilton.caching.fingerprinting.hash_value(obj: AbstractPolarsDataFrame, *args, depth: int = 0,
**Rwargs) > str

hamilton.caching.fingerprinting.hash_value(obj: AbstractPolarsColumn, *args, depth: int = 0,
**Rwargs) - str

hamilton.caching.fingerprinting.hash_value(obj: AbstractNumpyArray, *args, depth: int = 0,
**Rwargs) > str
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Fingerprinting strategy that computes a hash of the full Python object.

The default case hashes the __dict__ attribute of the object (recursive).

hamilton.caching.fingerprinting.set_max_depth(depth: int) - None
Set the maximum recursion depth for fingerprinting non-supported types.

Parameters:

depth - The maximum depth for fingerprinting.

Stores

stores.base

class hamilton.caching.stores.base.MetadataStore

abstractmethod delete(cache_key: str) - None

Delete data_version keyed by cache_key .

abstractmethod delete_all() > None

Delete all stored metadata.

abstractmethod exists(cache_key: str) > bool

boolean check if a data_version is found for cache_key If True, .get() should
successfully retrieve the data_version .

abstractmethod get(cache_key: str, **kwargs) - str | None

Try to retrieve data_version keyed by cache_key . If retrieval misses return None .

get_last_run() > Any

Return the metadata from the last started run.

abstractmethod get_run(run_id: str) » Sequence[dict]

Return a list of node metadata associated with a run.

For each node, the metadata should include cache_key (created or used) and
data_version. These values allow to manually query the MetadataStore or
ResultStore.

Decoding  the cache_key gives  the node_name , code_version, and
dependencies_data_versions . Individual implementations may add more information
or decode the cache_key before returning metadata.
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abstractmethod get_run_ids() - Sequence[str]
Return a list of run ids, sorted from oldest to newest start time. A run_id is
registered when the metadata_store .initialize() is called.

abstractmethod initialize(run_id: str) > None
Setup the metadata store and log the start of the run

property last_run_id: str
Return

abstractmethod set(cache_key: str, data_version: str, **kwargs) - Any | None
Store the mapping cache_key -> data_version. Can include other metadata (e.g,
node name, run id, code version) depending on the implementation.

property size: int
Number of unique entries (i.e., cache_keys) in the metadata_store

exception hamilton.caching.stores.base.ResultRetrievalError
Raised by the SmartCacheAdapter when ResultStore.get() fails.

class hamilton.caching.stores.base.ResultStore
abstractmethod delete(data_version: str) - None
Delete result keyed by data_version.

abstractmethod delete_all() > None
Delete all stored results.

abstractmethod exists(data_version: str) - bool
boolean check if a result is found for data_version If True, .get() should
successfully retrieve the result .

abstractmethod get(data_version: str, **kwargs) - Any | None
Try to retrieve result keyed by data_version . If retrieval misses, return None .

abstractmethod set(data_version: str, result: Any, **kwargs) > None
Store result keyed by data_version.

hamilton.caching.stores.base.search_data_adapter_registry(name: str, type_: type) >
Tuple[Type[DataSaver], Type[DataLoader]]
Find pair of DataSaver and Dataloader registered with name and supporting type_

stores.file

class hamilton.caching.stores.file.FileResultStore(path: str, create_dir: bool = True)
delete(data_version: str) > None
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Delete result keyed by data_version.

delete_all() » None
Delete all stored results.

exists(data_version: str) - bool
boolean check if a result is found for data_version If True, .get() should
successfully retrieve the result .

get(data_version: str) » Any | None
Try to retrieve result keyed by data_version . If retrieval misses, return None .

set(data_version: str, result: Any, saver_cls: DataSaver | None = None, loader_cls:
Dataloader | None = None) - None
Store result keyed by data_version.

stores.sqlite

class hamilton.caching.stores.sqlite.SQLiteMetadataStore(path: str, connection_kwargs: dict |
None = None)
property connection: Connection
Connection to the SQLite database.

delete(cache_key: str) - None
Delete metadata associated with cache_key .

delete_all() » None
Delete all existing tables from the database

exists(cache_key: str) - bool
boolean check if a data_version is found for cache_key If True, .get() should
successfully retrieve the data_version.

get(cache_key: str) - str | None
Try to retrieve data_version keyed by cache_key . If retrieval misses return None .

get_run(run_id: str) > List[dict]
Return a list of node metadata associated with a run.

Parameters:

run_id - ID of the run to retrieve

Returns:
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List of node metadata which includes cache_key,
data_version, node_name, and code_version. The list
can be empty if a run was initialized but no nodes were
executed.

Raises:

IndexError - if the run_id is not found in metadata
store.

get_run_ids() > List[str]
Return a list of run ids, sorted from oldest to newest start time.

initialize(run_id) > None
Call initialize when starting a run. This will create database tables if necessary.

set(*, cache_key: str, data_version: str, run_id: str, node_name: str = None, code_version: str
= None, **kwargs) > None
Store the mapping cache_key -> data_version. Can include other metadata (e.g,
node name, run id, code version) depending on the implementation.

stores.memory

class hamilton.caching.stores.memory.InMemoryMetadataStore
delete(cache_key: str) > None
Delete the data_version for cache_key .

delete_all() » None
Delete all stored metadata.

exists(cache_key: str) - bool
Indicate if cache_key exists and it can retrieve a data_version.

get(cache_key: str) - str | None
Retrieve the data_version for cache_key .

get_run(run_id: str) - List[Dict[str, str]]
Return a list of node metadata associated with a run.

get_run_ids() > List[str]
Return a list of all run_id values stored.

initialize(run_id: str) » None
Set up and log the beginning of the run.
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classmethod load_from(metadata_store: MetadataStore) -» InMemoryMetadataStore
Load in-memory metadata from another MetadataStore instance.

Parameters:

metadata_store - MetadataStore instance to load from.

Returns:

InMemoryMetadataStore copy of the metadata_store .

from hamilton import driver

from hamilton.caching.stores.sqlite import
SQLiteMetadataStore

from hamilton.caching.stores.memory import
InMemoryMetadataStore

import my_dataflow

sqlite_metadata_store =
SQLiteMetadataStore(path="./.hamilton_cache")
in_memory_metadata_store =
InMemoryMetadataStore.load_from(sqlite_metadata_store)

# create the Driver with the in-memory metadata store
dr = (
driver.Builder()
.with_modules(my_dataflow)
.with_cache(metadata_store=in_memory_metadata_store)
.build()
)

persist_to(metadata_store: MetadataStore | None = None) - None
Persist in-memory metadata using another MetadataStore implementation.

Parameters:

metadata_store - MetadataStore implementation to use
for persistence. If None, a SQLiteMetadataStore is
created with the default path “/hamilton_cache”.

from hamilton import driver

from hamilton.caching.stores.sqlite import
SQLiteMetadataStore

from hamilton.caching.stores.memory import
InMemoryMetadataStore
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import my_dataflow

dr = (
driver.Builder()
.with_modules(my_dataflow)
.with_cache(metadata_store=InMemoryMetadataStore())
.build()

)

# execute the Driver several time. This will populate the
in-memory metadata store
dr.execute(...)

# persist to disk in-memory metadata
dr.cache.metadata_store.persist_to(SQLiteMetadataStore(path="./.hamilto

set(cache_key: str, data_version: str, run_id: str, **kwargs) - Any | None
Set the data_version for cache_key and associate it with the run_id .

class hamilton.caching.stores.memory.InMemoryResultStore(persist_on_exit: bool = False)
delete(data_version: str) > None
Delete result keyed by data_version.

delete_all() » None
Delete all stored results.

exists(data_version: str) - bool
boolean check if a result is found for data_version If True, .get() should
successfully retrieve the result.

get(data_version: str) » Any | None
Try to retrieve result keyed by data_version . If retrieval misses, return None .

classmethod load_from(result_store: ResultStore, metadata_store: MetadataStore | None =
None, data_versions: Sequence[str] | None = None) > InMemoryResultStore
Load in-memory results from another ResultStore instance.

Since result stores do not store an index of their keys, you must provide a
MetadataStore instance or a list of data_version for which results should be loaded
in memory.
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Parameters:

- result_store — ResultStore instance to load results
from.

- metadata_store - MetadataStore instance from
which all data_version are retrieved.

Returns:

InMemoryResultStore copy of the result_store.

from hamilton import driver

from hamilton.caching.stores.sqlite import
SQLiteMetadataStore

from hamilton.caching.stores.memory import
InMemoryMetadataStore

import my_dataflow

sqlite_metadata_store =
SQLiteMetadataStore(path="./.hamilton_cache")
in_memory_metadata_store =
InMemoryMetadataStore.load_from(sqlite_metadata_store)

# create the Driver with the in-memory metadata store
dr = (
driver.Builder()
.with_modules(my_dataflow)
.with_cache(metadata_store=in_memory_metadata_store)
.build()
)

persist_to(result_store: ResultStore | None = None) - None
Persist in-memory results using another ResultStore implementation.

Parameters:

result_store - ResultStore implementation to use for
persistence. If None, a FileResultStore is created with the
default path “/hamilton_cache”.

set(data_version: str, result: Any, **kRwargs) > None
Store result keyed by data_version.
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GraphAdapters

This section helps determine ways to execute Apache Hamilton. Note that these are special cases
of the Lifecycle Adapters meant to help with execution. They implement multiple lifecycle
customizations in a single place.

Reference

SimplePythonDataFrameGraphAdapter

class hamilton.base.SimplePythonDataFrameGraphAdapter

This is the original Hamilton graph adapter. It uses plain python and builds a dataframe
result.

This executes the Hamilton dataflow locally on a machine in a single threaded, single
process fashion. It assumes a pandas dataframe as a result.

Use this when you want to execute on a single machine, without parallelization, and you
want a pandas dataframe as output.

static check_input_type(node_type: Type, input_value: Any) - bool
Used to check whether the user inputs match what the execution strategy & functions
can handle.

Static purely for legacy reasons.

Parameters:
- node_type - The type of the node.

- input_value - An actual value that we want to inspect
matches our expectation.

Returns:

True if the input is valid, False otherwise.

static check_node_type_equivalence(node_type: Type, input_type: Type) - bool



443 GraphAdapters

Used to check whether two types are equivalent.
Static, purely for legacy reasons.

This is used when the function graph is being created and we're statically type
checking the annotations for compatibility.

Parameters:
- node_type - The type of the node.
- input_type - The type of the input that would flow
into the node.
Returns:

True if the types are equivalent, False otherwise.

execute_node(node: Node, kwargs: Dict[str, Any]) > Any
Given a node that represents a hamilton function, execute it. Note, in some adapters
this might just return some type of “future”.

Parameters:

- node - the Hamilton Node

- kwargs - the kwargs required to exercise the node
function.

Returns:

the result of exercising the node.

SimplePythonGraphAdapter

class hamilton.base.SimplePythonGraphAdapter(result_builder: ResultMixin = None)
This class allows you to swap out the build_result very easily.

This executes the Hamilton dataflow locally on a machine in a single threaded, single
process fashion. It allows you to specify a ResultBuilder to control the return type of what
execute() returns.
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Currently this extends SimplePythonDataFrameGraphAdapter, although that's largely for
legacy reasons (and can probably be changed).

TODO - change this to extend the right class.

__init__(result_builder: ResultMixin = None)
Allows you to swap out the build_result very easily.

Parameters:

result_builder - A ResultMixin object that will be used
to build the result.

static build_dataframe_with_dataframes(outputs: Dict[str, Any]) - DataFrame
Builds a dataframe from the outputs in an “outer join” manner based on index.

The behavior of pd.Dataframe(outputs) is that it will do an outer join based on
indexes of the Series passed in. To handle dataframes, we unpack the dataframe into
a dict of series, check to ensure that no columns are redefined in a rolling fashion
going in order of the outputs requested. This then results in an “enlarged” outputs
dict that is then passed to pd.Dataframe(outputs) to get the final dataframe.

Parameters:

outputs - The outputs to build the dataframe from.

Returns:

A dataframe with the outputs.

build_result(**outputs: Dict[str, Any]) - Any
Delegates to the result builder function supplied.

static check_input_type(node_type: Type, input_value: Any) - bool
Used to check whether the user inputs match what the execution strategy & functions
can handle.

Static purely for legacy reasons.

Parameters:
- node_type - The type of the node.

- input_value - An actual value that we want to inspect
matches our expectation.
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Returns:

True if the input is valid, False otherwise.

static check_node_type_equivalence(node_type: Type, input_type: Type) - bool
Used to check whether two types are equivalent.

Static, purely for legacy reasons.

This is used when the function graph is being created and we're statically type
checking the annotations for compatibility.

Parameters:
- node_type - The type of the node.

- input_type - The type of the input that would flow
into the node.

Returns:

True if the types are equivalent, False otherwise.

static check_pandas_index_types_match(all_index_types: Dict[str, List[str]], time_indexes:
Dict[str, List[str]], no_indexes: Dict[str, List[str]]) > bool
Checks that pandas index types match.

This only logs warning errors, and if debug is enabled, a debug statement to list index
types.

do_build_result(outputs: Dict[str, Any]) > Any
Implements the do_build_result method from the BaseDoBuildResult class. This is
kept from the user as the public-facing API is build_result, allowing us to change the
API/implementation of the internal set of hooks

do_check_edge_types_match(type_from: type, type_to: type) - bool
Method that checks whether two types are equivalent. This is used when the function
graph is being created.
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Parameters:

- type_from - The type of the node that is the source of
the edge.

- type_to - The type of the node that is the destination
of the edge.

Return bool:

Whether or not they are equivalent

do_node_execute(run_id: str, node_: Node, kwargs: Dict[str, Any],

task_id: str | None = None) - Any
Method that is called to implement node execution. This can replace the execution of
a node with something all together, augment it, or delegate it.

Parameters:
- run_id - ID of the run, unique in scope of the driver.
- node - Node that is being executed

- kwargs - Keyword arguments that are being passed
into the node

- task_id - ID of the task, defaults to None if not in a
task setting

do_validate_input(node_type: type, input_value: Any) - bool
Method that an input value maches an expected type.

Parameters:
- node_type - The type of the node.

- input_value - The value that we want to validate.

Returns:

Whether or not the input value matches the expected
type.

execute_node(node: Node, kwargs: Dict[str, Any]) > Any
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Given a node that represents a hamilton function, execute it. Note, in some adapters
this might just return some type of “future”.

Parameters:

- node - the Hamilton Node

- kwargs - the kwargs required to exercise the node
function.

Returns:

the result of exercising the node.

input_types() - List[Type[Typel]
Currently this just shoves anything into a dataframe. We should probably tighten this
up.

output_type() > Type
Returns the output type of this result builder :return: the type that this creates

static pandas_index_types(outputs: Dict[str, Any]) - Tuple[Dict[str, List[str]], Dict[str,
List[str]], Dict[str, List[str]]]
This function creates three dictionaries according to whether there is an index type or
not.

The three dicts we create are: 1. Dict of index type to list of outputs that match it. 2.
Dict of time series / categorical index types to list of outputs that match it. 3. Dict of
no-index key to list of outputs with no index type.

Parameters:

outputs - the dict we're trying to create a result from.

Returns:

dict of all index types, dict of time series/categorical
index types, dict if there is no index

HamiltonGraphAdapter

Graph adapters control how functions are executed as the graph is walked.
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class hamilton.base.HamiltonGraphAdapter
Legacy graph adapter - see lifecycle methods for more information.

h_async.AsyncGraphAdapter

class hamilton.async_driver.AsyncGraphAdapter(result_builder: ResultMixin = None,
async_lifecycle_adapters: LifecycleAdapterSet | None = None)
Graph adapter for use with the AsyncDriver class.

__init__(result_builder: ResultMixin = None, async_lifecycle_adapters: LifecycleAdapterSet |
None = None)
Creates an AsyncGraphAdapter class. Note this will only work with the AsyncDriver
class.

Some things to note:

1. This executes everything at the end (recursively). E.G. the final DAG
nodes are awaited

2. This does not work with decorators when the async function is being
decorated. That is because that function is called directly within the
decorator, so we cannot await it.

build_result(**outputs: Any) - Any
Given a set of outputs, build the result.

Parameters:

outputs - the outputs from the execution of the graph.

Returns:

the result of the execution of the graph.

do_build_result(outputs: Dict[str, Any]) > Any
Implements the do_build_result method from the BaseDoBuildResult class. This is
kept from the user as the public-facing API is build_result, allowing us to change the
API/implementation of the internal set of hooks

do_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =
None) - Any
Executes a node. Note this doesn’t actually execute it — rather, it returns a task. This
does not use async def, as we want it to be awaited on later - this await is done in
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processing parameters of downstream functions/final results. We can ensure that as
we also run the driver that this corresponds to.

Note that this assumes that everything is awaitable, even if it isn't. In that case, it just
wraps it in one.

Parameters:

- task_id

- node

- run_id

- node - Node to wrap

- kwargs - Keyword arguments (either coroutines or

raw values) to call it with
Returns:

A task

input_types() - List[Type[Typell
Gives the applicable types to this result builder. This is optional for backwards
compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() > Type
Returns the output type of this result builder :return: the type that this creates

h_threadpool.FutureAdapter

This is an adapter to delegate execution of the individual nodes in a Apache Hamilton graph to a
threadpool. This is useful when you have a graph with many nodes that can be executed in
parallel.

class hamilton.plugins.h_threadpool.FutureAdapter(max_workers: int = None,
thread_name_prefix: str =", result_builder: ResultBuilder = None)
Adapter that lazily submits each function for execution to a ThreadpoolExecutor.
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This adapter has similar behavior to the async Hamilton driver which allows for parallel
execution of functions.

This adapter works because we don't have to worry about object serialization.

Caveats: - DAGs with lots of CPU intense functions will limit usefulness of this adapter,
unless they release the GIL. - DAGs with lots of 1/0 bound work will benefit from this
adapter, e.g. making API calls. - The max parallelism is limited by the number of threads in
the ThreadPoolExecutor.

Unsupported behavior: - The FutureAdapter does not support DAGs with Parallelizable &
Collect functions. This is due to laziness rather than anything inherently technical. If you'd
like this feature, please open an issue on the Hamilton repository.

__init__(max_workers: int = None, thread_name_prefix: str = ", result_builder: ResultBuilder
= None)
Constructor. :param max_workers: The maximum number of threads that can be used
to execute the given calls. :param thread_name_prefix: An optional name prefix to give
our threads. :param result_builder: Optional. Result builder to use for building the
result.

build_result(**outputs: Any) - Any
Given a set of outputs, build the result.

This function will block until all futures are resolved.

Parameters:

outputs - the outputs from the execution of the graph.

Returns:

the result of the execution of the graph.

do_build_result(outputs: Dict[str, Any]) > Any
Implements the do_build_result method from the BaseDoBuildResult class. This is
kept from the user as the public-facing API is build_result, allowing us to change the
API/implementation of the internal set of hooks

do_remote_execute(*, execute_lifecycle_for_node: Callable, node: Node, **kwargs: Dict[str,
Any]) > Any
Function that submits the passed in function to the ThreadPoolExecutor to be
executed after wrapping it with the _new_fn function.
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Parameters:
- node - Node that is being executed

- execute_lifecycle_for_node - Function executing
lifecycle_hooks and lifecycle_methods

- kwargs - Keyword arguments that are being passed
into the function

input_types() - List[Type[Typel]
Gives the applicable types to this result builder. This is optional for backwards
compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() > Type
Returns the output type of this result builder :return: the type that this creates

CachingGraphAdapter

This is an experimental GraphAdapter; there is a possibility of their APl changing. That said, the
code is stable, and you should feel comfortable giving the code for a spin - let us know how it
goes, and what the rough edges are if you find any. We'd love feedback if you are using these to
know how to improve them or graduate them.

class hamilton.experimental.h_cache.CachingGraphAdapter(cache_path: str, *args,
force_compute: Set[str] | None = None, writers: Dict[str, Callable[[Any, str, str], None]] | None =
None, readers: Dict[str, Callable[[Any, str], Anyl] | None = None, **kwargs)

Caching adapter.

Any node with tag “cache” will be cached (or loaded from cache) in the format defined by
the tag's value. There are a handful of formats supported, and other formats’ readers and
writers can be provided to the constructor.

Values are loaded from cache if the node’s file exists, unless one of these is true:
- node is explicitly forced to be computed with a constructor argument,

-any of its (potentially transitive) dependencies that are configured to be cached
was nevertheless computed (either forced or missing cached file).
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Custom Serializers

One can provide custom readers and writers for any format by passing them to the
constructor. These readers and writers will override the default ones. If you don’t want to
override, but rather extend the default ones, you can do so by registering them with the
register method on the appropriate function.

Writer functions need to have the following signature: def write_<format>(data: Any, filepath:
str, name: str) -> None: ... where data is the data to be written, filepath is the path to the file
to be written to, and name is the name of the node that is being written.

Reader functions need to have the following signature: def read_<format>(data: Any,
filepath: str) -> Any: ... where data is an EMPTY OBJECT of the type you wish to instantiate,
and filepath is the path to the file to be read from.

For example, if you want to extend JSON reader/writer to work with your custom type T, you
can do the following:

awrite_json.register(T)
def write_json_pdi(data: T, filepath: str, name: str) ->
None:

aread_json.register(T)
def read_json_dict(data: T, filepath: str) -> T:

Usage

This is a simple example of the usage of CachingGraphAdapter.

First, let's define some nodes in nodes.py:

import pandas as pd
from hamilton.function_modifiers import tag

def data_a() -> pd.DataFrame:

atag(cache="parquet")
def data_b() -> pd.DataFrame:

def transformed(data_a: pd.DataFrame, data_b: pd.DataFrame) ->
pd.DataFrame:

Notice that data_b is configured to be cached in a parquet file.
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We then simply initialize the driver with a caching adapter:

from hamilton import base
from hamilton.driver import Driver
from hamilton.experimental import h_cache

import nodes

adapter = h_cache.CachingGraphAdapter(cache_path,
base.PandasDataFrameResult())

dr = Driver(config, nodes, adapter=adapter)
result = dr.execute(["transformed"])

# Because “data_b” has been cached now, only “data_a  and
“transformed ™ nodes

# will actually run.

result = dr.execute(["transformed"])

__init__(cache_path: str, *args, force_compute: Set[str] | None = None, writers: Dict[str,
Callable[[Any, str, str], None]] | None = None, readers: Dict[str, Callable[[Any, str], Any]] |
None = None, **kwargs)

Constructs the adapter.

Parameters:

- cache_path - Path to the directory where cached files
are stored.

- force_compute - Set of nodes that should be forced
to compute even if cache exists.

- writers - A dictionary of writers for custom formats.

- readers - A dictionary of readers for custom formats.

static build_dataframe_with_dataframes(outputs: Dict[str, Any]) > DataFrame
Builds a dataframe from the outputs in an “outer join” manner based on index.

The behavior of pd.Dataframe(outputs) is that it will do an outer join based on
indexes of the Series passed in. To handle dataframes, we unpack the dataframe into
a dict of series, check to ensure that no columns are redefined in a rolling fashion
going in order of the outputs requested. This then results in an “enlarged” outputs
dict that is then passed to pd.Dataframe(outputs) to get the final dataframe.

Parameters:
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outputs - The outputs to build the dataframe from.

Returns:

A dataframe with the outputs.

build_result(**outputs: Dict[str, Any]) = Any
Clears the computed nodes information and delegates to the super class.

static check_input_type(node_type: Type, input_value: Any) - bool
Used to check whether the user inputs match what the execution strategy & functions
can handle.

Static purely for legacy reasons.

Parameters:
- node_type - The type of the node.
- input_value - An actual value that we want to inspect
matches our expectation.
Returns:

True if the input is valid, False otherwise.

static check_node_type_equivalence(node_type: Type, input_type: Type) - bool
Used to check whether two types are equivalent.

Static, purely for legacy reasons.

This is used when the function graph is being created and we're statically type
checking the annotations for compatibility.

Parameters:
- node_type - The type of the node.
- input_type - The type of the input that would flow
into the node.
Returns:

True if the types are equivalent, False otherwise.
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static check_pandas_index_types_match(all_index_types: Dict[str, List[str]], time_indexes:
Dict[str, List[str]], no_indexes: Dict[str, List[str]]) - bool
Checks that pandas index types match.

This only logs warning errors, and if debug is enabled, a debug statement to list index
types.

do_build_result(outputs: Dict[str, Anyl) > Any
Implements the do_build_result method from the BaseDoBuildResult class. This is
kept from the user as the public-facing API is build_result, allowing us to change the
API/implementation of the internal set of hooks

do_check_edge_types_match(type_from: type, type_to: type) - bool
Method that checks whether two types are equivalent. This is used when the function
graph is being created.

Parameters:

- type_from - The type of the node that is the source of
the edge.

- type_to - The type of the node that is the destination
of the edge.
Return bool:

Whether or not they are equivalent

do_node_execute(run_id: str, node_: Node, kwargs: Dict[str, Any],

task_id: str | None = None) - Any
Method that is called to implement node execution. This can replace the execution of
a node with something all together, augment it, or delegate it.

Parameters:
-run_id - ID of the run, unique in scope of the driver.
- node - Node that is being executed

- kwargs - Keyword arguments that are being passed
into the node

- task_id - ID of the task, defaults to None if not in a
task setting

do_validate_input(node_type: type, input_value: Any) - bool
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Method that an input value maches an expected type.

Parameters:
- node_type - The type of the node.

- input_value - The value that we want to validate.

Returns:

Whether or not the input value matches the expected
type.

execute_node(node: Node, kwargs: Dict[str, Any]) > Any
Executes nodes conditionally according to caching rules.

This node is executed if at least one of these is true:
- no cache is present,
- it is explicitly forced by passing it to the adapter in force_compute,

- at least one of its upstream nodes that had a @cache annotation was computed,
either due to lack of cache or being explicitly forced.

input_types() > List[Type[Typell
Currently this just shoves anything into a dataframe. We should probably tighten this
up.

output_type() > Type
Returns the output type of this result builder :return: the type that this creates

static pandas_index_types(outputs: Dict[str, Any]) - Tuple[Dict[str, List[str]], Dict[str,
List[str]], Dict[str, List[str]]]
This function creates three dictionaries according to whether there is an index type or
not.

The three dicts we create are: 1. Dict of index type to list of outputs that match it. 2.
Dict of time series / categorical index types to list of outputs that match it. 3. Dict of
no-index key to list of outputs with no index type.

Parameters:

outputs - the dict we're trying to create a result from.

Returns:



457 GraphAdapters

dict of all index types, dict of time series/categorical
index types, dict if there is no index

h_dask.DaskGraphAdapter

Runs the entire Hamilton DAG on dask.

class hamilton.plugins.h_dask.DaskGraphAdapter(dask_client: Client, result_builder: ResultMixin
= None, visualize_kwargs: dict = None, use_delayed: bool = True, compute_at_end: bool = True)
Class representing what's required to make Hamilton run on Dask.

This walks the graph and translates it to run onto Dask.
Use pip install sf-hamilton[dask] to get the dependencies required to run this.
Try this adapter when:

1. Dask is a good choice to scale computation when you really can’'t do things in
memory anymore with pandas. For most simple pandas operations, you
should not have to do anything to scale! You just need to load in data via
dask rather than pandas.

2. Dask can help scale to larger data sets if running on a cluster — you'll just
have to switch to natively using their object types if that's the case (set
use_delayed=False, and compute_at_end=False).

3. Use this adapter if you want to utilize multiple cores on a single machine, or
you want to scale to large data set sizes with a Dask cluster that you can
connect to.

4. The ONLY CAVEAT really is whether you use delayed or dask datatypes (or
both).

Please read the following notes about its limitations.

Notes on scaling:
- Multi-core on single machine
- Distributed computation on a Dask cluster

- Scales to any size of data supported by Dask [%4 assuming you load it
appropriately via Dask loaders.


https://dask.org/
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- Works best with Pandas 2.0+ and pyarrow backend.

Function return object types supported:

- Works for any python object that can be serialized by the Dask framework.

Pandas?

Dask implements a good subset of the Pandas API:
- You might be able to get away with scaling without having to change your code at
all!

- See https://docs.dask.org/en/latest/dataframe-api.html for Pandas supported APIs.

- If it is not supported by their API, you have to then read up and think about how to
structure you hamilton function computation — https://docs.dask.org/en/latest/
dataframe.html

- if paired with DaskDataFrameResult & use_delayed=False & compute_at_end=False,
it will help you produce a dask dataframe as a result that you can then convert
back to pandas if you want.

Loading Data:

- see https://docs.dask.org/en/latest/best-practices.html#load-data-with-dask.

-we recommend creating a python module specifically encapsulating
functions that help you load data.

CAVEATS with use_delayed=True:

- If using use_delayed=True serialization costs can outweigh the benefits of
parallelism, so you should benchmark your code to see if it's worth it.

- With this adapter & use_delayed=True, it can naively wrap all your functions
with delayed, which will mean they will be executed and scheduled across
the dask workers. This is a good choice if your computation is slow, or
Hamilton graph is highly parallelizable.

DISCLAIMER - this class is experimental, so signature changes are a possibility! But we'll aim
to be backwards compatible where possible.

__init__(dask_client: Client, result_builder: ResultMixin = None, visualize_kwargs: dict =
None, use_delayed: bool = True, compute_at_end: bool = True)


https://docs.dask.org/en/latest/dataframe-api.html
https://docs.dask.org/en/latest/dataframe.html
https://docs.dask.org/en/latest/dataframe.html
https://docs.dask.org/en/latest/best-practices.html#load-data-with-dask
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Constructor

You have the ability to pass in a ResultMixin object to the constructor to control the
return type that gets produced by running on Dask.

Parameters:

- dask_client - the dask client - we don't do anything
with it, but thought that it would be useful to wire
through here.

- result_builder - The function that will build the
result. Optional, defaults to pandas dataframe.

- visualize_kwargs - Arguments to visualize the graph
using dask’s internals. None, means no visualization.
Dict, means visualize — see https://docs.dask.org/en/
latest/api.html?highlight=visualizettdaskvisualize  for
what to pass in.

-use_delayed - Default is True for backwards
compatibility. Whether to use dask.delayed to wrap
every function. Note: it is probably not necessary to
mix this with using dask objects, e.g. dataframes/
series. They are by nature lazily computed and
operate over the dask data types, so you don't need to
wrap them with delayed. Use delayed if you want to
farm out computation.

- compute_at_end - Default is True for backwards
compatibility. Whether to compute() at the end. That
is, should .compute() be called in the result builder to
quick off computation.

build_result(**outputs: Dict[str, Any]) > Any
Builds the result and brings it back to this running process.

Parameters:

outputs - the dictionary of key -> Union[delayed object
reference | value]

Returns:


https://docs.dask.org/en/latest/api.html?highlight=visualize#dask.visualize
https://docs.dask.org/en/latest/api.html?highlight=visualize#dask.visualize
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The type of object returned by selfresult_builder. Note
the following behaviors: - if you use_delayed=True, then
the result will be a delayed object. - if you
use_delayed=True & computed_at_end=True, then the
result will be the return type of selfresult_builder. - if
you use_delayed=False & computed_at_end=True, this
will only work if the selfresult_builder returns a dask
type, as we will try to compute it. - if you
use_delayed=False & computed_at_end=False, this will
return the result of self.result_builder.

static check_input_type(node_type: Type, input_value: Any) - bool

Used to check whether the user inputs match what the execution strategy & functions

can handle.

Static purely for legacy reasons.

Parameters:
- node_type - The type of the node.

- input_value - An actual value that we want to inspect
matches our expectation.

Returns:

True if the input is valid, False otherwise.

static check_node_type_equivalence(node_type: Type, input_type: Type) - bool

Used to check whether two types are equivalent.

Static, purely for legacy reasons.

This is used when the function graph is being created and we're statically type

checking the annotations for compatibility.

Parameters:
- node_type - The type of the node.

- input_type - The type of the input that would flow
into the node.

Returns:
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True if the types are equivalent, False otherwise.

do_build_result(outputs: Dict[str, Anyl) > Any
Implements the do_build_result method from the BaseDoBuildResult class. This is
kept from the user as the public-facing API is build_result, allowing us to change the
API/implementation of the internal set of hooks

do_check_edge_types_match(type_from: type, type_to: type) - bool
Method that checks whether two types are equivalent. This is used when the function
graph is being created.

Parameters:

- type_from - The type of the node that is the source of
the edge.

- type_to - The type of the node that is the destination
of the edge.
Return bool:

Whether or not they are equivalent

do_node_execute(run_id: str, node_: Node, kwargs: Dict[str, Any],

task_id: str | None = None) - Any
Method that is called to implement node execution. This can replace the execution of
a node with something all together, augment it, or delegate it.

Parameters:
-run_id - ID of the run, unique in scope of the driver.
- node - Node that is being executed

- kwargs - Keyword arguments that are being passed
into the node

- task_id - ID of the task, defaults to None if not in a
task setting

do_validate_input(node_type: type, input_value: Any) - bool
Method that an input value maches an expected type.
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Parameters:
- node_type - The type of the node.

- input_value - The value that we want to validate.

Returns:

Whether or not the input value matches the expected
type.

execute_node(node: Node, kwargs: Dict[str, Any]) > Any
Function that is called as we walk the graph to determine how to execute a hamilton
function.

Parameters:
- node - the node from the graph.

- kwargs - the arguments that should be passed to it.

Returns:

returns a dask delayed object.

input_types() > List[Type[Typell
Gives the applicable types to this result builder. This is optional for backwards
compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() > Type
Returns the output type of this result builder :return: the type that this creates

h_spark.PySparkUDFGraphAdapter

This is an experimental GraphAdapter; there is a possibility of their APl changing. That said, the
code is stable, and you should feel comfortable giving the code for a spin - let us know how it
goes, and what the rough edges are if you find any. We'd love feedback if you are using these to
know how to improve them or graduate them.
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class hamilton.plugins.h_spark.PySparkUDFGraphAdapter
UDF graph adapter for PySpark.

This graph adapter enables one to write Hamilton functions that can be executed as UDFs in
PySpark.

Core to this is the mapping of function arguments to Spark columns available in the passed
in dataframe.

This adapter currently supports:

- regular UDFs, these are executed in a row based fashion.

- and a single variant of Pandas UDFs: func(series+) -> series

- can also run regular Hamilton functions, which will execute spark driver side.
DISCLAIMER - this class is experimental, so signature changes are a possibility!

__init__()
build_result(**outputs: Dict[str, Any]) > DataFrame
Builds the result and brings it back to this running process.

Parameters:

outputs - the dictionary of key -> Union[ray object
reference | value]

Returns:

The type of object returned by self.result_builder.

static check_input_type(node_type: Type, input_value: Any) - bool
If the input is a pyspark dataframe, skip, else delegate the check.

static check_node_type_equivalence(node_type: Type, input_type: Type) - bool
Checks for the htype.column annotation and deals with it.

execute_node(node: Node, kwargs: Dict[str, Any]) > Any
Given a node to execute, process it and apply a UDF if applicable.

Parameters:
- node - the node we're processing.

- kwargs - the inputs to the function.
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Returns:

the result of the function.

h_ray.RayGraphAdapter
The graph adapter to delegate execution of the individual nodes in a Apache Hamilton graph to
Ray.

class hamilton.plugins.h_ray.RayGraphAdapter(result_builder: ResultMixin, ray_init_config:
Dict[str, Any] = None, shutdown_ray_on_completion: bool = False)
Class representing what's required to make Hamilton run on Ray.

This walks the graph and translates it to run onto Ray.
Use pip install sf-hamilton[ray] to get the dependencies required to run this.
Use this if:

- you want to utilize multiple cores on a single machine, or you want to scale
to larger data set sizes with a Ray cluster that you can connect to. Note (1):
you are still constrained by machine memory size with Ray; you can’t just
scale to any dataset size. Note (2): serialization costs can outweigh the
benefits of parallelism so you should benchmark your code to see if it's
worth it.

Notes on scaling:

- Multi-core on single machine
- Distributed computation on a Ray cluster

- Scales to any size of data @p; you are LIMITED by the memory on the
instance/computer .

Function return object types supported:

- Works for any python object that can be serialized by the Ray framework.


https://ray.io/
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Pandas?

- @ Ray DOES NOT do anything special about Pandas.

CAVEATS

- Serialization costs can outweigh the benefits of parallelism, so you should
benchmark your code to see if it's worth it.

DISCLAIMER - this class is experimental, so signature changes are a possibility!

__init__(result_builder: ResultMixin, ray_init_config: Dict[str, Any] = None,
shutdown_ray_on_completion: bool = False)
Constructor

You have the ability to pass in a ResultMixin object to the constructor to control the
return type that gets produce by running on Ray.

Parameters:

- result_builder - Required. An implementation of
base.ResultMixin.

- ray_init_config - allows to connect to an existing
cluster or start a new one with custom configuration
(https://docs.ray.io/en/latest/ray-core/api/doc/
ray.init.html)

- shutdown_ray_on_completion - by default we leave
the cluster open, but we can also shut it down

do_build_result(outputs: Dict[str, Any]) > Any
Builds the result and brings it back to this running process.

Parameters:

outputs - the dictionary of key -> Union[ray object
reference | value]

Returns:

The type of object returned by self.result_builder.

static do_check_edge_types_match(type_from: Type, type_to: Type) - bool


https://docs.ray.io/en/latest/ray-core/api/doc/ray.init.html
https://docs.ray.io/en/latest/ray-core/api/doc/ray.init.html
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Method that checks whether two types are equivalent. This is used when the function
graph is being created.

Parameters:

- type_from - The type of the node that is the source of
the edge.

- type_to - The type of the node that is the destination
of the edge.
Return bool:

Whether or not they are equivalent

do_remote_execute(*, execute_lifecycle_for_node: Callable, node: Node, **kwargs: Dict[str,

Any]) > Any
Function that is called as we walk the graph to determine how to execute a hamilton

function.

Parameters:

- execute_lifecycle_for_node - wrapper function that
executes lifecycle hooks and methods

- kwargs - the arguments that should be passed to it.

Returns:

returns a ray object reference.

static do_validate_input(node_type: Type, input_value: Any) - bool
Method that an input value maches an expected type.

Parameters:
- node_type - The type of the node.

- input_value - The value that we want to validate.

Returns:

Whether or not the input value matches the expected
type.
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post_graph_execute(*args, **kwargs)
We have the option to close the cluster down after execution.

h_spark.SparkKoalasGraphAdapter

This is an experimental GraphAdapter; there is a possibility of their API changing. That said, the
code is stable, and you should feel comfortable giving the code for a spin - let us know how it
goes, and what the rough edges are if you find any. We'd love feedback if you are using these to
know how to improve them or graduate them.

class hamilton.plugins.h_spark.SparkKoalasGraphAdapter(spark_session, result_builder:
ResultMixin, spine_column: str)
Class representing what's required to make Hamilton run on Spark with Koalas, i.e. Pandas
on Spark.

This walks the graph and translates it to run onto Apache Spark using the Pandas API on
Spark

Use pip install sf-hamilton[spark] to get the dependencies required to run this.

Currently, this class assumes you're running SPARK 3.2+ You'd generally use this if you have
an existing spark cluster running in your workplace, and you want to scale to very large data
set sizes.

Some tips on koalas (before it was merged into spark 3.2):

- https://databricks.com/blog/2020/03/31/10-minutes-from-pandas-to-koalas-
on-apache-spark.html

- https://spark.apache.org/docs/latest/api/python/user_guide/
pandas_on_spark/index.html

Spark is a more heavyweight choice to scale computation for Hamilton graphs creating a
Pandas Dataframe.

Notes on scaling:

- Multi-core on single machine (%4 (if you setup Spark locally to do so)
- Distributed computation on a Spark cluster

- Scales to any size of data as permitted by Spark


https://spark.apache.org/%22
https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html
https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html
https://databricks.com/blog/2020/03/31/10-minutes-from-pandas-to-koalas-on-apache-spark.html
https://databricks.com/blog/2020/03/31/10-minutes-from-pandas-to-koalas-on-apache-spark.html
https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html
https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html
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Function return object types supported:

- @ Not generic. This does not work for every Hamilton graph.

. Currently we're targeting this at Pandas/Koalas types [dataframes, series].

Pandas?

. Koalas on Spark 3.2+ implements a good subset of the pandas API. Keep it
simple and you should be good to go!

CAVEATS

- Serialization costs can outweigh the benefits of parallelism, so you should
benchmark your code to see if it's worth it.

DISCLAIMER - this class is experimental, so signature changes are a possibility!

__init__(spark_session, result_builder: ResultMixin, spine_column: str)
Constructor

You only have the ability to return either a Pandas on Spark Dataframe or a Pandas
Dataframe. To do that you either use the stock base.PandasDataFrameResult class, or
you use h_spark.KoalasDataframeResult.

Parameters:
- spark_session - the spark session to use.

- result_builder - the function to build the result -
currently on Pandas and Koalas are “supported”.

- spine_column - the column we should use first as the
spine and then subsequently join against.

build_result(**outputs: Dict[str, Any]) > DataFrame | DataFrame | dict
Given a set of outputs, build the result.

Parameters:

outputs - the outputs from the execution of the graph.

Returns:


https://github.com/apache/hamilton/blob/main/hamilton/base.py#L39
https://github.com/apache/hamilton/blob/main/hamilton/experimental/h_spark.py#L16
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the result of the execution of the graph.

static check_input_type(node_type: Type, input_value: Any) - bool
Function to equate an input value, with expected node type.

We need this to equate pandas and koalas objects/types.

Parameters:
- node_type - the declared node type

- input_value - the actual input value

Returns:

whether this is okay, or not.

static check_node_type_equivalence(node_type: Type, input_type: Type) - bool
Function to help equate pandas with koalas types.

Parameters:
- node_type - the declared node type.

- input_type - the type of what we want to pass into it.

Returns:

whether this is okay, or not.

do_build_result(outputs: Dict[str, Any]) > Any
Implements the do_build_result method from the BaseDoBuildResult class. This is
kept from the user as the public-facing API is build_result, allowing us to change the
API/implementation of the internal set of hooks

do_check_edge_types_match(type_from: type, type_to: type) - bool
Method that checks whether two types are equivalent. This is used when the function
graph is being created.

Parameters:

- type_from - The type of the node that is the source of
the edge.
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- type_to - The type of the node that is the destination
of the edge.

Return bool:

Whether or not they are equivalent

do_node_execute(run_id: str, node_: Node, kwargs: Dict[str, Any],

task_id: str | None = None) - Any
Method that is called to implement node execution. This can replace the execution of
a node with something all together, augment it, or delegate it.

Parameters:
- run_id - ID of the run, unique in scope of the driver.
- node - Node that is being executed

- kwargs - Keyword arguments that are being passed
into the node

- task_id - ID of the task, defaults to None if not in a
task setting

do_validate_input(node_type: type, input_value: Any) - bool
Method that an input value maches an expected type.

Parameters:
- node_type - The type of the node.

- input_value - The value that we want to validate.

Returns:

Whether or not the input value matches the expected
type.

execute_node(node: Node, kwargs: Dict[str, Any]) > Any
Function that is called as we walk the graph to determine how to execute a hamilton

function.

Parameters:

- node - the node from the graph.
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- kwargs - the arguments that should be passed to it.

Returns:

returns a koalas column

input_types() > List[Type[Typell
Gives the applicable types to this result builder. This is optional for backwards
compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() > Type
Returns the output type of this result builder :return: the type that this creates
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Lifecycle Adapters

Currently a few of the API extensions are still experimental. Note this doesn’'t mean they're not
well-tested or thought out - rather that we're actively looking for feedback. More docs upcoming,
but for now fish around the experimental package, and give the extensions a try!

The other extensions live within plugins. These are fully supported and will be backwards
compatible across major versions.

Customization

The subsequent documents contain public-facing APIs for customizing Apache Hamilton's
execution. Note that the public-facing APIs are still a work in progress — we will be improving the
documentation. We plan for the APIs, however, to be stable looking forward.

lifecycle.ResultBuilder

class hamilton.lifecycle.api.ResultBuilder
Abstract class for building results. All result builders should inherit from this class and
implement the build_result function. Note that applicable_input_type and output_type are
optional, but recommended, for backwards compatibility. They let us type-check this. They
will default to Any, which means that they'll connect to anything.

abstractmethod build_result(**outputs: Any) > Any
Given a set of outputs, build the result.

Parameters:

outputs - the outputs from the execution of the graph.

Returns:

the result of the execution of the graph.

final do_build_result(outputs: Dict[str, Any]) > Any
Implements the do_build_result method from the BaseDoBuildResult class. This is
kept from the user as the public-facing API is build_result, allowing us to change the
API/implementation of the internal set of hooks


https://github.com/apache/hamilton/tree/main/hamilton/experimental
https://github.com/apache/hamilton/tree/main/hamilton/plugins
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input_types() > List[Type[Typel]]
Gives the applicable types to this result builder. This is optional for backwards
compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() > Type
Returns the output type of this result builder :return: the type that this creates

lifecycle.LegacyResultMixin

class hamilton.lifecycle.api.LegacyResultMixin
Backwards compatible legacy result builder. This utilizes a static method as we used to do
that, although often times they got confused. If you want a result builder, use ResultBuilder
above instead.

static build_result(**outputs: Any) > Any
Given a set of outputs, build the result.

Parameters:

outputs - the outputs from the execution of the graph.

Returns:

the result of the execution of the graph.

do_build_result(outputs: Dict[str, Any]) > Any
Implements the do_build_result method from the BaseDoBuildResult class. This is
kept from the user as the public-facing API is build_result, allowing us to change the
API/implementation of the internal set of hooks

input_types() - List[Type[Typell
Gives the applicable types to this result builder. This is optional for backwards
compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() > Type
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Returns the output type of this result builder :return: the type that this creates

lifecycle.api.GraphAdapter

class hamilton.lifecycle.api.GraphAdapter
This is an implementation of HamiltonGraphAdapter, which has now been implemented with

lifecycle methods/hooks.

static build_result(**outputs: Any) > Any
Given a set of outputs, build the result.

Parameters:

outputs - the outputs from the execution of the graph.

Returns:

the result of the execution of the graph.

abstractmethod static check_input_type(node_type: Type, input_value: Any) - bool
Used to check whether the user inputs match what the execution strategy & functions
can handle.

Static purely for legacy reasons.

Parameters:
- node_type - The type of the node.

- input_value - An actual value that we want to inspect
matches our expectation.

Returns:

True if the input is valid, False otherwise.

abstractmethod static check_node_type_equivalence(node_type: Type, input_type: Type) >
bool
Used to check whether two types are equivalent.

Static, purely for legacy reasons.

This is used when the function graph is being created and we're statically type
checking the annotations for compatibility.
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Parameters:
- node_type - The type of the node.

- input_type - The type of the input that would flow
into the node.

Returns:

True if the types are equivalent, False otherwise.

do_build_result(outputs: Dict[str, Any]) > Any
Implements the do_build_result method from the BaseDoBuildResult class. This is

kept from the user as the public-facing API is build_result, allowing us to change the
API/implementation of the internal set of hooks

final do_check_edge_types_match(type_from: type, type_to: type) - bool
Method that checks whether two types are equivalent. This is used when the function
graph is being created.

Parameters:

- type_from - The type of the node that is the source of
the edge.

- type_to - The type of the node that is the destination
of the edge.

Return bool:

Whether or not they are equivalent

final do_node_execute(run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =
None) - Any

Method that is called to implement node execution. This can replace the execution of
a node with something all together, augment it, or delegate it.

Parameters:
- run_id - ID of the run, unique in scope of the driver.
- node - Node that is being executed

- kwargs - Keyword arguments that are being passed
into the node
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- task_id - ID of the task, defaults to None if not in a
task setting

final do_validate_input(node_type: type, input_value: Any) - bool
Method that an input value maches an expected type.

Parameters:
- node_type - The type of the node.

- input_value - The value that we want to validate.

Returns:

Whether or not the input value matches the expected
type.

abstractmethod execute_node(node: Node, kwargs: Dict[str, Any]) > Any
Given a node that represents a hamilton function, execute it. Note, in some adapters
this might just return some type of “future”.

Parameters:

- node - the Hamilton Node

- kwargs - the kwargs required to exercise the node
function.

Returns:

the result of exercising the node.

input_types() > List[Type[Typell
Gives the applicable types to this result builder. This is optional for backwards
compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() > Type
Returns the output type of this result builder :return: the type that this creates
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lifecycle.NodeExecutionHook

class hamilton.lifecycle.api.NodeExecutionHook
Implement this to hook into the node execution lifecycle. You can call anything before and
after the driver

final post_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool,
error: Exception | None, result: Any | None, task_id: str | None = None)
Wraps the after_execution method, providing a bridge to an external-facing API. Do

not override this!

None = None)
Wraps the before_execution method, providing a bridge to an external-facing API. Do
not override this!

abstractmethod run_after_node_execution(*, node_name: str, node_tags: Dict[str, Any],

node_kwargs: Dict[str, Any], node_return_type: type, result: Any, error: Exception | None,
success: bool, task_id: str | None, run_id: str, **future_kwargs: Any)
Hook that is executed post node execution.

Parameters:
- node_name - Name of the node in question
- node_tags - Tags of the node

-node_kwargs - Keyword arguments passed to the
node

- node_return_type - Return type of the node

- result - Output of the node, None if an error occurred
- error — Error that occurred, None if no error occurred
- success - Whether the node executed successfully

-task_id - The ID of the task, none if not in a task-
based environment

-run_id - Run ID (unique in process scope) of the
current run. Use this to track state.

- future_kwargs - Additional keyword arguments - this
is kept for backwards compatibility
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abstractmethod run_before_node_execution(*, node_name: str, node_tags: Dict[str, Any],
node_kwargs: Dict[str, Any], node_return_type: type, task_id: str [ None, run_id: str,
node_input_types: Dict[str, Any], **future_kRwargs: Any)

Hook that is executed prior to node execution.

Parameters:
- node_name - Name of the node.
- node_tags - Tags of the node

- node_kwargs - Keyword arguments to pass to the
node

- node_return_type - Return type of the node

-task_id - The ID of the task, none if not in a task-
based environment

-run_id - Run ID (unique in process scope) of the
current run. Use this to track state.

- node_input_types - the input types to the node and
what it is expecting

- future_kwargs - Additional keyword arguments - this
is kept for backwards compatibility

lifecycle.api.GraphExecutionHook

class hamilton.lifecycle.api.GraphExecutionHook
Implement this to execute code before and after graph execution. This is useful for logging,
etc...

final post_graph_execute(*, run_id: str, graph: FunctionGraph, success: bool, error:

Exception | None, results: Dict[str, Any] | None)
Just delegates to the interface method, passing in the right data.

final pre_graph_execute(*, run_id: str, graph: FunctionGraph, final_vars: List[str], inputs:
Dict[str, Any], overrides: Dict[str, Any])
Implementation of the pre_graph_execute hook. This just converts the inputs to the
format the user-facing hook is expecting — performing a walk of the DAG to pass in the
set of nodes to execute. Delegates to the interface method.
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Parameters:

- graph - Graph that is being executed

- results - Results of the graph execution

- error — Error that occurred, None if no error occurred
- success — Whether the graph executed successfully

-run_id - Run ID (unique in process scope) of the
current run. Use this to track state.

- future_kwargs - Additional keyword arguments - this
is kept for backwards compatibility

Parameters:

- graph - Graph that is being executed

- final_vars - Output variables of the graph

- inputs - Input variables passed to the graph
- overrides - Overrides passed to the graph

- execution_path - Collection of nodes that will be
executed - these are just the nodes (not input nodes)
that will be run during the course of execution.

-run_id - Run ID (unique in process scope) of the

current run. Use this to track state.

- future_kwargs - Additional keyword arguments - this

is kept for backwards compatibility

abstractmethod run_after_graph_execution(*, graph: HamiltonGraph, success: bool, error:
Exception | None, results: Dict[str, Any] | None, run_id: str, **future_kwargs: Any)
This is run after graph execution. This allows you to do anything you want after the
graph executes, knowing the results of the execution/any errors.

abstractmethod run_before_graph_execution(*, graph: HamiltonGraph, final_vars: List[str],

inputs: Dict[str, Any], overrides: Dict[str, Any], execution_path: Collection[str], run_id: str,

**future_kwargs: Any)
This is run prior to graph execution. This allows you to do anything you want before
the graph executes, knowing the basic information that was passed in.
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lifecycle.api.EdgeConnectionHook

class hamilton.lifecycle.api.EdgeConnectionHook
Implement this to customize edges that are allowed in the graph. You can do customizations
around typing here.

abstractmethod check_edge_types_match(type_from: type, type_to: type, **kwargs: Any) -
bool
This is run to check if edge types match. Note that this is an OR functionality - this is
run after we do some default checks, so this can only be permissive. Reach out if you
want to be more restrictive than the default checks.

Parameters:

- type_from - The type of the node that is the source of
the edge.

- type_to - The type of the node that is the destination
of the edge.

-kwargs - This is kept for future backwards
compatibility.

Returns:

Whether or not the two node types form a valid edge.

final do_check_edge_types_match(*, type_from: type, type_to: type) - bool

Wraps the check_edge_types_match method, providing a bridge to an external-facing
API. Do not override this!

final do_validate_input(*, node_type: type, input_value: Any) - bool

Wraps the validate_input method, providing a bridge to an external-facing API. Do not
override this!

abstractmethod validate_input(node_type: type, input_value: Any, **Rwargs: Any) - bool
This is run to check if the input is valid for the node type. Note that this is an OR
functionality - this is run after we do some default checks, so this can only be
permissive. Reach out if you want to be more restrictive than the default checks.

Parameters:

- node_type - Type of the node that is accepting the
input.
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- input_value - Value of the input
- kwargs - Keyword arguments - this is kept for future
backwards compatibility.
Returns:

Whether the input is valid for the node type.

lifecycle.api.NodeExecutionMethod

class hamilton.lifecycle.api.NodeExecutionMethod
API for executing a node. This takes in tags, callable, node name, and kwargs, and is
responsible for executing the node and returning the result. Note this is not (currently) able
to be layered together, although we may add that soon.

final do_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None
= None) - Any
Method that is called to implement node execution. This can replace the execution of
a node with something all together, augment it, or delegate it.

Parameters:
-run_id - ID of the run, unique in scope of the driver.
- node - Node that is being executed

- kwargs - Keyword arguments that are being passed
into the node

- task_id - ID of the task, defaults to None if not in a
task setting

abstractmethod run_to_execute_node(*, node_name: str, node_tags: Dict[str, Any],
node_callable: Any, node_kwargs: Dict[str, Anyl], task_id: str | None, is_expand: bool,
is_collect: bool, **future_kwargs: Any) > Any

This method is responsible for executing the node and returning the result.

Parameters:
- node_name - Name of the node.

- node_tags - Tags of the node.
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- node_callable - Callable of the node.

- node_kwargs - Keyword arguments to pass to the
node.

- task_id - The ID of the task, none if not in a task-
based environment

- is_expand - Whether the node is parallelizable.
- is_collect - Whether the node is a collect node.

- future_kwargs - Additional keyword arguments - this
is kept for backwards compatibility

Returns:

The result of the node execution — up to you to return
this.

lifecycle.api.StaticValidator

class hamilton.lifecycle.api.Staticvalidator
Performs static validation of the DAG. Note that this has the option to perform default
validation for each method - this means that if you don't implement one of these it is OK.

class MyTagValidator(api.StaticValidator):
"'"'Validates tags on a node'"'

def run_to_validate_node(
self, *, node: HamiltonNode, #**future_kwargs

) -> tuple[bool, Optional[str]]:

if node.tags.get("node_type", "") == "output":
table_name = node.tags.get("table_name")
if not table_name: # None or empty
error_msg = (f"Node {node.tags['module']}.
{node.name} "

"is an output node, but does not have a table_name tag.")

return False, error_msg
return True, None

run_to_validate_graph(graph: HamiltonGraph, **future_kwargs) - Tuple[bool, str | None]
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Override this to build custom DAG validations! Default to just returning that the graph
is valid, so you don’t have to implement it if you want to just implement a single
method. Runs post graph construction to validate a graph. You have access to a bunch
of metadata about the graph, stored in the graph argument.

Parameters:
- graph - Graph to validate.

- future_kwargs - Additional keyword arguments - this
is kept for backwards compatibility

Returns:

A tuple of whether the graph is valid and an error
message in the case of failure. Return [True, None] for a
valid graph. Otherwise, return a detailed error message -
this should have all context/debugging information.

run_to_validate_node(*, node: HamiltonNode, **future_kwargs) - Tuple[bool, str | None]
Override this to build custom node validations! Defaults to just returning that a node
is valid so you don’'t have to implement it if you want to just implement a single
method. Runs post node construction to validate a node. You have access to a bunch

of metadata about the node, stored in the hamilton_node argument

Parameters:
- node - Node to validate

- future_kwargs - Additional keyword arguments - this
is kept for backwards compatibility

Returns:

A tuple of whether the node is valid and an error
message in the case of failure. Return [True, None] for a
valid node.Otherwise, return a detailed error message -
this should have all context/debugging information, but
does not need to mention the node name (it will be
aggregated with others).

final validate_graph(*, graph: FunctionGraph, modules: List{ModuleType], config: Dict[str,
Any]) - Tuple[bool, Exception | None]
Validates the graph. This will raise an InvalidNodeException
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Parameters:
- graph - Graph that has been constructed.
- modules - Modules passed into the graph

- config - Config passed into the graph

Returns:

A (is_valid, error_message) tuple

final validate_node(*, created_node: Node) - Tuple[bool, Exception | None]

Validates a node. This will raise an InvalidNodeException if the node is invalid.

Parameters:

created_node - Node that was created.

Raises:

InvalidNodeException - If the node is invalid.

lifecycle.api.GraphConstructionHook

class hamilton.lifecycle.api.GraphConstructionHook
Hook that is run after graph construction. This allows you to register/capture info on the
graph. Note that, in the case of materialization, this may be called multiple times (once
when we create the graph, once when we materialize). Currently information into that is not
exposed to the user, but we will be adding that in future iterations.

post_graph_construct(*, graph: FunctionGraph, modules: ListfModuleType], config: Dict[str,

Any])
Hooks that is called after the graph is constructed.

Parameters:
- graph - Graph that has been constructed.
- modules - Modules passed into the graph

- config - Config passed into the graph
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abstractmethod run_after_graph_construction(*, graph: HamiltonGraph, config: Dict[str,
Any], **future_kwargs: Any)
Hook that is run post graph construction. This allows you to register/capture info on
the graph. A common pattern is to store something in your object’s state here so that
you can use it later (E.G. compute a hash on the graph)

Parameters:
- graph - Graph that was constructed
- config - Configuration used to construct the graph

- future_kwargs -  Reserved  for  backwards
compatibility.

lifecycle.api.TaskSubmissionHook

class hamilton.lifecycle.api.TaskSubmissionHook
Implement this to hook into the task submission process. Tasks are submitted to an
executor, which then controls how and where the nodes associated with the task are run.

overrides: Dict[str, Any], spawning_task_id: str | None, purpose: None)
Hook that is called immediately prior to task submission to an executor as a task
future. Note that this is only useful in dynamic execution, although we reserve the
right to add this back into the standard hamilton execution pattern.

pre_task_submission(*, run_id: str, task_id: str, nodes: List[Node], inputs: Dict[str, Any],

Parameters:

- run_id - ID of the run, unique in scope of the driver.
- task_id - ID of the task.

- nodes - Nodes that are being executed.

- inputs - Inputs to the task.

- overrides — Overrides to task execution.

- spawning_task_id - ID of the task that spawned this
task.

- purpose - Purpose of the current task group.
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abstractmethod run_before_task_submission(*, run_id: str, task_id: str, nodes: List[Node],

inputs: Dict[str, Any], overrides: Dict[str, Any], spawning_task_id: str | None, purpose: None,
**future_kwargs)
Runs prior to a task being submitted to an executor. By definition this is run outside
of the task executor, on the process that executed the driver.

Parameters:
- run_id - ID of the run this is under.
- task_id - ID of the task we're launching.
- nodes - Nodes that are part of this task
- inputs - Inputs to the task
- overrides — Overrides passed to the task

- spawning_task_id - ID of the task that spawned this
task

- purpose - Purpose of the current task group

- future_kwargs - Reserved for  backwards
compatibility.

lifecycle.api.TaskReturnHook

class hamilton.lifecycle.api.TaskReturnHook
Implement this to hook into the task return process. Tasks are submitted to an executor,
which executes the task and returns the results (or raises an error).

post_task_return(¥, run_id: str, task_id: str, nodes: List[Node], result: Any, success: bool,
error: Exception | None, spawning_task_id: str | None, purpose: None)
Hook called immediately after a task returns from an executor. Note that this is only
useful in dynamic execution, although we reserve the right to add this back into the

standard hamilton execution pattern.

Parameters:
- run_id - ID of the run, unique in scope of the driver.

- task_id - ID of the task
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- result - Return value of the task.

-success - Whether or not the task executed
successfully

- error — The error that was raised, if any

- spawning_task_id - ID of the task that spawned this
task

- purpose - Purpose of the current task group

abstractmethod run_after_task_return(*, run_id: str, task_id: str, nodes: List[Node], result:
Any, success: bool, error: Exception | None, spawning_task_id: str | None, purpose: None,

**future_kwargs)

Runs after a task has been returned from a executor. By definition this is run outside

of the task executor, on the process that executed the driver.

Parameters:
-run_id - ID of the run this is under.
- task_id - ID of the task that was just executed.
- nodes - Nodes that were part of this task
- result - Result of the task
- success - Whether the task was successful
- error — The error the task threw, if any

- spawning_task_id - ID of the task that spawned this
task

- purpose - Purpose of the current task group

- future_kwargs - Reserved for  backwards
compatibility.

lifecycle.api.TaskExecutionHook

class hamilton.lifecycle.api.TaskExecutionHook

Implement this to hook into the task execution process. Tasks consist of a group of one or

more nodes that are run on a task executor.
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results: Dict[str, Any] | None, success: bool, error: Exception, spawning_task_id: str | None,
purpose: None)
Hook called immediately after task execution. Note that this is only useful in dynamic
execution, although we reserve the right to add this back into the standard hamilton
execution pattern.

Parameters:
- run_id - ID of the run, unique in scope of the driver.
- task_id - ID of the task
- nodes - Nodes that were executed
- results - Results of the task

-success - Whether or not the task executed
successfully

- error - The error that was raised, if any

- spawning_task_id - ID of the task that spawned this
task

- purpose - Purpose of the current task group

pre_task_execute(*, run_id: str, task_id: str, nodes: List[Node], inputs: Dict[str, Any],

overrides: Dict[str, Any], spawning_task_id: str | None, purpose: None)
Hook that is called immediately prior to task execution. Note that this is only useful in
dynamic execution, although we reserve the right to add this back into the standard
hamilton execution pattern.

Parameters:
- run_id - ID of the run, unique in scope of the driver.
- task_id - ID of the task, unique in scope of the driver.
- nodes - Nodes that are being executed
- inputs - Inputs to the task
- overrides - Overrides to task execution

- spawning_task_id - ID of the task that spawned this
task
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- purpose - Purpose of the current task group

abstractmethod run_after_task_execution(*, task_id: str, run_id: str, nodes:

List{HamiltonNode], results: Dict[str, Any] | None, success: bool, error: Exception,
spawning_task_id: str | None, purpose: None, **future_kwargs)
Runs after all of the nodes associated with a task have been executed. By definition
this is run inside of the executor and therefore may be run on separate or distributed
processes.

Parameters:
- task_id - ID of the task that was just executed
- run_id - ID of the run this was under.
- nodes - Nodes that were part of this task
- results - Results of the task, per-node
- success - Whether the task was successful
- error — The error the task threw, if any

- future_kwargs - Reserved for  backwards
compatibility.

- spawning_task_id - ID of the task that spawned this
task

- purpose - Purpose of the current task group

List(HamiltonNode], inputs: Dict[str, Anyl, overrides: Dict[str, Anyl, spawning_task_id: str |
None, purpose: None, **future_kwargs)
Runs prior to any of the nodes associated with a task. By definition this is run inside
of the executor and therefore may be run on separate or distributed processes.

abstractmethod run_before_task_execution(*, task_id: str, run_id: str, nodes:

Parameters:
- task_id - ID of the task we're launching.
- run_id - D of the run this is under.
- nodes - Nodes that are part of this task
- inputs - Inputs to the task

- overrides — Overrides passed to the task
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- future_kwargs - Reserved for  backwards
compatibility.

- spawning_task_id - ID of the task that spawned this
task

- purpose - Purpose of the current task group

lifecycle.api.TaskGroupingHook

class hamilton.lifecycle.api.TaskGroupingHook
Implement this to run something after task grouping or task expansion. This will allow you
to capture information about the tasks during Parallelize/Collect blocks in dynamic DAG
execution.

final post_task_expand(*, run_id: str, task_id: str, parameters: Dict[str, Any])
Hook that is called immediately after a task is expanded into parallelizable tasks.
Note that this is only useful in dynamic execution.

Parameters:
-run_id - ID of the run, unique in scope of the driver.
- task_id - ID of the task.

- parameters - Parameters that are being passed to
each of the expanded tasks.

final post_task_group(*, run_id: str, task_ids: List[str])
Hook that is called immediately after a task group is created. Note that this is only
useful in dynamic execution, although we reserve the right to add this back into the
standard hamilton execution pattern.

Parameters:
- run_id - ID of the run, unique in scope of the driver.

- task_ids - IDs of tasks that are in the group.

abstractmethod run_after_task_expansion(*, run_id: str, task_id: str, parameters: Dict[str,
Any], **future_kwargs)
Runs after task expansion in Parallelize/Collect blocks. This allows you to capture
information about the task that was expanded.
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Parameters:
- run_id - ID of the run, unique in scope of the driver.
- task_id - ID of the task that was expanded.

- parameters - Parameters that were passed to the
task.

- future_kwargs - Additional keyword arguments - this
is kept for backwards compatibility.

abstractmethod run_after_task_grouping(*, run_id: str, task_ids: List[str], **future_kwargs)
Runs after task grouping. This allows you to capture information about which tasks
were created for a given run.

Parameters:
- run_id - ID of the run, unique in scope of the driver.
- task_ids - List of tasks that were grouped together.

- future_kwargs - Additional keyword arguments - this
is kept for backwards compatibility.

Available Adapters

In addition to the base classes for lifecycle adapters, we have a few adapters implemented and

available for use. Note that some of these are plugins, meaning they require installing additional
(external) libraries.

Recall to add lifecycle adapters, you just need to call the with_adapters method of the driver:

dr = (

driver

.Builder()

.with_modules(...)

.with_adapters(
Adapteri(...),
Adapter2(...),
*more_adapters)

...build()
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lifecycle.PDBDebugger

class hamilton.lifecycle.default.PDBDebugger(node_filter: Callable[[str, Dict[str, Anyl], bool] |
List[str] | str | None, before: bool = False, during: bool = False, after: bool = False)
Class to inject a PDB debugger into a node execution. This is still somewhat experimental as
it is a debugging utility. We reserve the right to change the APl and the implementation of
this class in the future.

__init__(node_filter: Callable[[str, Dict[str, Any]], bool] | List[str] | str | None, before: bool =
False, during: bool = False, after: bool = False)
Creates a PDB debugger. This has three possible modes:
1. Before - places you in a function with (a) node information, and (b) inputs

2. During - runs the node with pdb.run. Note this may not always work or give
what you expect as
node functions are often wrapped in multiple levels of input
modifications/whatnot. That said, it should give you something. Also
note that this is not (currently) compatible with graph adapters.

3. After - places you in a function with (a) node information, (b) inputs, and (c)
results

Parameters:

- node_filter - A function that takes a node name and a
node tags dict and returns a boolean. If the boolean is
True, the node will be printed out.

- before - Whether to place you in a PDB debugger
before a node executes

- during - Whether to place you in a PDB debugger
during a node’s execution

- after - Whether to place you in a PDB debugger after
a node executes

do_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =
None) - Any
Method that is called to implement node execution. This can replace the execution of
a node with something all together, augment it, or delegate it.

Parameters:

- run_id - ID of the run, unique in scope of the driver.
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- node - Node that is being executed

- kwargs - Keyword arguments that are being passed
into the node

- task_id - ID of the task, defaults to None if not in a
task setting

post_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool, error:
Exception | None, result: Any | None, task_id: str | None = None)
Wraps the after_execution method, providing a bridge to an external-facing API. Do
not override this!

pre_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str [ None =
None)
Wraps the before_execution method, providing a bridge to an external-facing API. Do
not override this!

Dict[str, Any], node_return_type: type, result: Any, error: Exception | None, success: bool,
task_id: str | None, **future_kwargs: Any)
Executes after a node, whether or not it was successful. Does nothing, just runs
pdb.set_trace().

run_after_node_execution(*, node_name: str, node_tags: Dict[str, Any], node_kwargs:

Parameters:
- node_name - Name of the node
- node_tags - Tags of the node

- node_kwargs - Keyword arguments passed to the
node

- node_return_type - Return type of the node

- result — Result of the node, None if there was an error
- error — Error of the node, None if there was no error

- success — Whether the node ran successful or not

- task_id - Task ID of the node, if any

- future_kwargs - Additional keyword arguments that
may be passed to the hook yet are ignored for now
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run_before_node_execution(*, node_name: str, node_tags: Dict[str, Any], node_kwargs:

Dict[str, Any], node_return_type: type, task_id: str | None, **future_kwargs: Any)
Executes before a node executes. Does nothing, just runs pdb.set_trace()

Parameters:
- node_name - Name of the node
- node_tags - Tags of the node

- node_kwargs - Keyword arguments passed to the
node

- node_return_type - Return type of the node

- task_id - ID of the task that the node is in, if any

- future_kwargs - Additional keyword arguments that
may be passed to the hook yet are ignored for now

Returns:

Result of the node

run_to_execute_node(*, node_name: str, node_tags: Dict[str, Anyl, node_callable: Any,
node_kwargs: Dict[str, Any], task_id: str | None, **future_kwargs: Any) - Any
Executes the node with a PDB debugger. This modifies the global
PDBDebugger.CONTEXT variable to contain information about the node,
SO you can access it while debugging.

Parameters:
- node_name - Name of the node
- node_tags - Tags of the node
- node_callable - Callable function of the node

- node_kwargs - Keyword arguments passed to the
node

- task_id - ID of the task that the node is in, if any

- future_kwargs - Additional keyword arguments that
may be passed to the hook yet are ignored for now
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Returns:

Result of the node

lifecycle.PrintLn

Use this hook to print out data before/after a node’s execution for debugging

class hamilton.lifecycle.default.PrintLn(verbosity: int = 1, print_fn: ~typing.Callable[[str], None] =
<built-in function print>, node_filter: ~typing.Callable[[str, ~typing.Dict[str, ~typing.Anyl], bool] |
~typing.List[str] | str | None = None)

Basic hook to print out information before/after node execution.

__init__(verbosity: int = 1, print_fn: ~typing.Callable[[str], None] = <built-in function print>,
node_filter: ~typing.Callable[[str, ~typing.Dict[str, ~typing.Any]], bool] | ~typing.List[str] | str
| None = None)

Prints out information before/after node execution.

Parameters:

- verbosity - The verbosity level to print out at
verbosity=1 Print out just the node name and time it
took to execute verbosity=2. Print out inputs of the
node + results on execute

- print_fn - A function that takes a string and prints it
out - defaults to print. Pass in a logger function, etc...
if you so choose.

- node_filter - A function that takes a node name and a
node tags dict and returns a boolean. If the boolean is
True, the node will be printed out. If False, it will not
be printed out.

post_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool, error:
Exception | None, result: Any | None, task_id: str | None = None)
Wraps the after_execution method, providing a bridge to an external-facing API. Do
not override this!

pre_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =
None)
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Wraps the before_execution method, providing a bridge to an external-facing API. Do
not override this!

run_after_node_execution(*, node_name: str, node_tags: Dict[str, Any], node_Rkwargs:

Dict[str, Any], result: Any, error: Exception | None, success: bool, task_id: str | None,
**future_kwargs: Any)
Runs after a node executes. Prints out the node name and time it took, the output if
verbosity is 1.

Parameters:
- node_name - Name of the node
- node_tags - Tags of the node

- node_kwargs - Keyword arguments passed to the
node

- result - Result of the node

- error - Error of the node

- success — Whether the node was successful or not
- task_id - ID of the task that the node is in, if any

- future_kwargs - Additional keyword arguments that
may be passed to the hook yet are ignored for now

run_before_node_execution(*, node_name: str, node_tags: Dict[str, Anyl, node_kwargs:

Dict[str, Any], task_id: str | None, **future_kwargs: Any)
Runs before a node executes. Prints out the node name and inputs if verbosity is 2.

Parameters:

- node_name - Name of the node

- node_tags - Tags of the node

- node_kwargs - Keyword arguments of the node
- task_id - ID of the task that the node is in, if any

- future_kwargs - Additional keyword arguments that
may be passed to the hook yet are ignored for now
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plugins.h_tqdm.ProgressBar

Provides a progress bar for Apache Hamilton execution. Must have tgdm installed to use it:
pip install sf-hamilton[tgdm] (use quotes if using zsh)

class hamilton.plugins.h_tqdm.ProgressBar(desc: str = 'Graph execution', max_node_name_width:
int = 50, **kRwargs)
An adapter that uses tqdm to show progress bars for the graph execution.

Note: you need to have tqdm installed for this to work. If you don’t have it installed, you can
install it with pip install tgdm (or pip install sf-hamilton[tgdm] - use quotes if you're using
zsh).

from hamilton.plugins import h_tqdm

dr = (
driver.Builder()
.with_config({})
.with_modules(some_modules)
.with_adapters(h_tqdm.ProgressBar(desc="DAG-NAME"))
.build()

)

# and then when you call .execute() or .materialize() you'll get
a progress bar!

__init__(desc: str = 'Graph execution', max_node_name_width: int = 50, **kwargs)
Create a new Progress Bar adapter.

Parameters:

- desc - The description to show in the progress bar.
E.g. DAG Name is a good choice.

- kwargs - Additional kwargs to pass to TQDM. See
TQDM docs for more info.

- node_name_target_width - the target width for the
node name so that the progress bar is consistent. If
this is None, it will take the longest, until it hits
max_node_name_width.

post_graph_execute(*, run_id: str, graph: FunctionGraph, success: bool, error: Exception |

None, results: Dict[str, Any] | None)
Just delegates to the interface method, passing in the right data.
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post_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool, error:
Exception | None, result: Any | None, task_id: str | None = None)
Wraps the after_execution method, providing a bridge to an external-facing API. Do

not override this!

pre_graph_execute(*, run_id: str, graph: FunctionGraph, final_vars: List[str], inputs: Dict[str,
Any], overrides: Dict[str, Any])
Implementation of the pre_graph_execute hook. This just converts the inputs to the
format the user-facing hook is expecting — performing a walk of the DAG to pass in the
set of nodes to execute. Delegates to the interface method.

pre_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =
None)
Wraps the before_execution method, providing a bridge to an external-facing API. Do
not override this!

run_after_graph_execution(**future_kwargs)
This is run after graph execution. This allows you to do anything you want after the
graph executes, knowing the results of the execution/any errors.

Parameters:

- graph - Graph that is being executed

- results - Results of the graph execution

- error - Error that occurred, None if no error occurred
- success — Whether the graph executed successfully

-run_id - Run ID (unique in process scope) of the
current run. Use this to track state.

- future_kwargs - Additional keyword arguments - this
is kept for backwards compatibility

run_after_node_execution(**future_kwargs)
Hook that is executed post node execution.

Parameters:
- node_name - Name of the node in question
- node_tags - Tags of the node

- node_kwargs - Keyword arguments passed to the
node
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- node_return_type - Return type of the node

- result - Output of the node, None if an error occurred
- error — Error that occurred, None if no error occurred
- success - Whether the node executed successfully

-task_id - The ID of the task, none if not in a task-

based environment

-run_id - Run ID (unique in process scope) of the

current run. Use this to track state.

- future_kwargs - Additional keyword arguments - this

is kept for backwards compatibility

run_before_graph_execution(¥, graph: HamiltonGraph, final_vars: List[str], inputs: Dict[str,
Any], overrides: Dict[str, Any], execution_path: Collection[str], **future_kwargs: Any)
This is run prior to graph execution. This allows you to do anything you want before
the graph executes, knowing the basic information that was passed in.

Parameters:

- graph - Graph that is being executed

- final_vars - Output variables of the graph

- inputs - Input variables passed to the graph
- overrides - Overrides passed to the graph

- execution_path - Collection of nodes that will be

executed - these are just the nodes (not input nodes)
that will be run during the course of execution.

-run_id - Run ID (unique in process scope) of the

current run. Use this to track state.

- future_kwargs - Additional keyword arguments - this

is kept for backwards compatibility

run_before_node_execution(*, node_name: str, node_tags: Dict[str, Anyl, node_kwargs:

Dict[str, Any], node_return_type: type, task_id: str | None, **future_kwargs: Any)
Hook that is executed prior to node execution.
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Parameters:
- node_name - Name of the node.
- node_tags - Tags of the node

- node_kwargs - Keyword arguments to pass to the
node

- node_return_type - Return type of the node

-task_id - The ID of the task, none if not in a task-
based environment

-run_id - Run ID (unique in process scope) of the
current run. Use this to track state.

- node_input_types - the input types to the node and
what it is expecting

- future_kwargs - Additional keyword arguments - this
is kept for backwards compatibility

plugins.h_rich.RichProgressBar

Provides a progress bar for Apache Hamilton execution. Must have rich installed to use it:
pip install sf-hamilton[rich] (use quotes if using zsh)

class hamilton.plugins.h_rich.RichProgressBar(run_desc: str = ", collect_desc: str = ", columns:
list[str | ProgressColumn] | None = None, **kwargs)
An adapter that uses rich to show simple progress bars for the graph execution.

Note: you need to have rich installed for this to work. If you don't have it installed, you can
install it with pip install rich (or pip install sf~-hamilton[rich] - use quotes if you're using
zsh).

from hamilton import driver
from hamilton.plugins import h_rich

dr = (
driver.Builder()
.with_config({})
.with_modules(some_modules)
.with_adapters(h_rich.RichProgressBar())
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.build()

and then when you call .execute() or .materialize() you'll get a progress bar!

Additionally, this progress bar will also work with task-based execution, showing the
progress of overall execution as well as the tasks within a parallelized group.

from hamilton import driver
from hamilton.execution import executors
from hamilton.plugins import h_rich

dr = (
driver.Builder()
.with_modules(__main__)
.enable_dynamic_execution(allow_experimental_mode=True)
.with_adapters(RichProgressBar())
.with_local_executor(executors.SynchronousLocalTaskExecutor())
.with_remote_executor(executors.SynchronousLocalTaskExecutor())

.build()

__init__(run_desc: str =", collect_desc: str = ", columns: list[str | ProgressColumn] | None =
None, **kwargs) - None
Create a new Rich Progress Bar adapter.

Parameters:

- run_desc - The description to show for the running
phase.

- collect_desc - The description to show for the
collecting phase (if applicable).

- columns - Column configuration for the progress bar.
See rich docs for more info.

-kwargs - Additional kwargs to pass to
rich.progress.Progress. See rich docs for more info.

None, results: Dict[str, Any] | None)
Just delegates to the interface method, passing in the right data.

post_graph_execute(*, run_id: str, graph: FunctionGraph, success: bool, error: Exception |

post_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool, error:

Exception | None, result: Any | None, task_id: str | None = None)
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Wraps the after_execution method, providing a bridge to an external-facing API. Do
not override this!

results: Dict[str, Any] | None, success: bool, error: Exception, spawning_task_id: str | None,
purpose: None)
Hook called immediately after task execution. Note that this is only useful in dynamic
execution, although we reserve the right to add this back into the standard hamilton
execution pattern.

Parameters:
-run_id - ID of the run, unique in scope of the driver.
- task_id - ID of the task
- nodes - Nodes that were executed
- results - Results of the task

-success - Whether or not the task executed
successfully

- error - The error that was raised, if any

- spawning_task_id - ID of the task that spawned this
task

- purpose - Purpose of the current task group

post_task_expand(*, run_id: str, task_id: str, parameters: Dict[str, Any])

Hook that is called immediately after a task is expanded into parallelizable tasks.
Note that this is only useful in dynamic execution.

Parameters:
- run_id - ID of the run, unique in scope of the driver.
- task_id - ID of the task.

- parameters - Parameters that are being passed to
each of the expanded tasks.

post_task_group(*, run_id: str, task_ids: List[str])
Hook that is called immediately after a task group is created. Note that this is only
useful in dynamic execution, although we reserve the right to add this back into the
standard hamilton execution pattern.
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Parameters:
- run_id - ID of the run, unique in scope of the driver.

- task_ids - IDs of tasks that are in the group.

pre_graph_execute(*, run_id: str, graph: FunctionGraph, final_vars: List[str], inputs: Dict[str,
Any], overrides: Dict[str, Any])
Implementation of the pre_graph_execute hook. This just converts the inputs to the
format the user-facing hook is expecting — performing a walk of the DAG to pass in the

set of nodes to execute. Delegates to the interface method.

pre_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Anyl, task_id: str | None =
None)
Wraps the before_execution method, providing a bridge to an external-facing API. Do
not override this!

pre_task_execute(*, run_id: str, task_id: str, nodes: List[Node], inputs: Dict[str, Any],
overrides: Dict[str, Anyl, spawning_task_id: str | None, purpose: None)
Hook that is called immediately prior to task execution. Note that this is only useful in
dynamic execution, although we reserve the right to add this back into the standard
hamilton execution pattern.

Parameters:
- run_id - ID of the run, unique in scope of the driver.
- task_id - ID of the task, unique in scope of the driver.
- nodes - Nodes that are being executed
- inputs - Inputs to the task
- overrides - Overrides to task execution

- spawning_task_id - ID of the task that spawned this
task

- purpose - Purpose of the current task group

run_after_graph_execution(**kwargs: Any)
This is run after graph execution. This allows you to do anything you want after the
graph executes, knowing the results of the execution/any errors.

Parameters:

- graph - Graph that is being executed
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- results - Results of the graph execution
- error — Error that occurred, None if no error occurred
- success - Whether the graph executed successfully

-run_id - Run ID (unique in process scope) of the

current run. Use this to track state.

- future_kwargs - Additional keyword arguments - this

is kept for backwards compatibility

run_after_node_execution(**kwargs)
Hook that is executed post node execution.

Parameters:
- node_name - Name of the node in question
- node_tags - Tags of the node

- node_kwargs - Keyword arguments passed to the

node

- node_return_type - Return type of the node

- result - Output of the node, None if an error occurred
- error - Error that occurred, None if no error occurred
- success - Whether the node executed successfully

-task_id - The ID of the task, none if not in a task-

based environment

-run_id - Run ID (unique in process scope) of the

current run. Use this to track state.

- future_kwargs - Additional keyword arguments - this

is kept for backwards compatibility

run_after_task_execution(*, purpose: NodeGroupPurpose, **kwargs)

Runs after all of the nodes associated with a task have been executed. By definition
this is run inside of the executor and therefore may be run on separate or distributed
processes.
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Parameters:
- task_id - ID of the task that was just executed
- run_id - ID of the run this was under.
- nodes - Nodes that were part of this task
- results - Results of the task, per-node
- success — Whether the task was successful
- error — The error the task threw, if any

- future_kwargs - Reserved for  backwards
compatibility.

- spawning_task_id - ID of the task that spawned this
task

- purpose - Purpose of the current task group

run_after_task_expansion(*, parameters: dict[str, Any], **kwargs)
Runs after task expansion in Parallelize/Collect blocks. This allows you to capture
information about the task that was expanded.

Parameters:
-run_id - ID of the run, unique in scope of the driver.
- task_id - ID of the task that was expanded.

- parameters - Parameters that were passed to the
task.

- future_kwargs - Additional keyword arguments - this
is kept for backwards compatibility.

run_after_task_grouping(*, task_ids: List[str], **kRwargs)
Runs after task grouping. This allows you to capture information about which tasks
were created for a given run.

Parameters:
-run_id - ID of the run, unique in scope of the driver.

- task_ids - List of tasks that were grouped together.
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- future_kwargs - Additional keyword arguments - this
is kept for backwards compatibility.

Parameters:

- graph - Graph that is being executed

- final_vars - Output variables of the graph

- inputs - Input variables passed to the graph
- overrides - Overrides passed to the graph

- execution_path - Collection of nodes that will be
executed - these are just the nodes (not input nodes)
that will be run during the course of execution.

-run_id - Run ID (unique in process scope) of the
current run. Use this to track state.

- future_kwargs - Additional keyword arguments - this
is kept for backwards compatibility

run_before_node_execution(**kwargs)
Hook that is executed prior to node execution.

Parameters:

- node_name - Name of the node.
- node_tags - Tags of the node

- node_kwargs - Keyword arguments to pass to the
node

- node_return_type - Return type of the node

-task_id - The ID of the task, none if not in a task-
based environment

-run_id - Run ID (unique in process scope) of the
current run. Use this to track state.

run_before_graph_execution(¥, execution_path: Collection[str], **kwargs: Any)
This is run prior to graph execution. This allows you to do anything you want before
the graph executes, knowing the basic information that was passed in.
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- node_input_types - the input types to the node and
what it is expecting

- future_kwargs - Additional keyword arguments - this
is kept for backwards compatibility

run_before_task_execution(*, purpose: NodeGroupPurpose, **kRwargs)

Runs prior to any of the nodes associated with a task. By definition this is run inside
of the executor and therefore may be run on separate or distributed processes.

Parameters:
- task_id - ID of the task we're launching.
- run_id - ID of the run this is under.
- nodes - Nodes that are part of this task
- inputs - Inputs to the task
- overrides — Overrides passed to the task

- future_kwargs -  Reserved  for  backwards
compatibility.

- spawning_task_id - ID of the task that spawned this
task

- purpose - Purpose of the current task group

plugins.h_ddog.DDOGTracer

class hamilton.plugins.h_ddog.DDOGTracer(root_name: str, include_causal_links: bool = False,
service: str = None)
Lifecycle adapter to use datadog to run tracing on node execution. This works with the
following execution environments: 1. Vanilla Hamilton - no task-based computation, just
nodes 2. Task-based, synchronous 3. Task-based with Multithreading, Ray, and Dask It will
likely work with others, although we have not yet tested them. This does not work with
async (yet).

Note that this is not a typical use of Datadog if you're not using hamilton for a microservice.
It does work quite nicely, however! Monitoring ETLs is not a typical datadog case (you can't
see relationships between nodes/tasks or data summaries), but it is easy enough to work
with and gives some basic information.
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This tracer bypasses context management so we can more accurately track relationships
between nodes/tags. Also, we plan to get this working with OpenTelemetry, and use that for
datadog integration.

To use this, you'll want to run pip install sf-hamilton[ddog] (or pip install “sf-
hamilton[ddog]” if using zsh)

__init__(root_name: str, include_causal_links: bool = False, service: str = None)
Creates a DDOGTracer. This has the option to specify some parameters.

Parameters:

- root_name - Name of the root trace/span. Due to the
way datadog inherits, this will inherit an active span.

- include_causal_links - Whether or not to include
span causal links. Note that there are some edge-
cases here, and This is Iin beta for datadog, and
actually broken in the current client, but it has been
fixed and will be released shortly: https://github.com/
DataDog/dd-trace-py/issues/8049. Furthermore, the
query on datadog is slow for displaying causal links.
We've disabled this by default, but feel free to test it
out - its likely they'll be improving the docum

- service - Service name - will pick it up from the
environment through DDOG if not available.

post_graph_execute(*, run_id: str, graph: FunctionGraph, success: bool, error: Exception |
None, results: Dict[str, Any] | None)
Just delegates to the interface method, passing in the right data.

post_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool, error:
Exception | None, result: Any | None, task_id: str | None = None)
Wraps the after_execution method, providing a bridge to an external-facing API. Do

not override this!

results: Dict[str, Any] | None, success: bool, error: Exception, spawning_task_id: str | None,
purpose: None)
Hook called immediately after task execution. Note that this is only useful in dynamic
execution, although we reserve the right to add this back into the standard hamilton
execution pattern.
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Parameters:
- run_id - ID of the run, unique in scope of the driver.
- task_id - ID of the task
- nodes - Nodes that were executed
- results - Results of the task

-success - Whether or not the task executed
successfully

- error - The error that was raised, if any

- spawning_task_id - ID of the task that spawned this
task

- purpose - Purpose of the current task group

pre_graph_execute(*, run_id: str, graph: FunctionGraph, final_vars: List[str], inputs: Dict[str,
Any], overrides: Dict[str, Any])
Implementation of the pre_graph_execute hook. This just converts the inputs to the
format the user-facing hook is expecting — performing a walk of the DAG to pass in the

set of nodes to execute. Delegates to the interface method.

pre_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =
None)
Wraps the before_execution method, providing a bridge to an external-facing API. Do
not override this!

pre_task_execute(*, run_id: str, task_id: str, nodes: List[Node], inputs: Dict[str, Any],
overrides: Dict[str, Anyl, spawning_task_id: str | None, purpose: None)
Hook that is called immediately prior to task execution. Note that this is only useful in
dynamic execution, although we reserve the right to add this back into the standard
hamilton execution pattern.

Parameters:
-run_id - ID of the run, unique in scope of the driver.
- task_id - ID of the task, unique in scope of the driver.
- nodes - Nodes that are being executed
- inputs - Inputs to the task

- overrides — Overrides to task execution
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- spawning_task_id - ID of the task that spawned this
task

- purpose - Purpose of the current task group

run_after_graph_execution(*, error: Exception | None, run_id: str, **future_kwargs: Any)
Runs after graph execution. Garbage collects + finishes the root span.

Parameters:
- error - Error the graph raised when running, if any
-run_id - ID of the run

- future_kwargs - reserved for future keyword
arguments/backwards compatibility.

run_after_node_execution(*, node_name: str, error: Exception | None, task_id: str | None,
run_id: str, **future_kwargs: Any)
Runs after a node’s execution — completes the span.

Parameters:

- node_name - Name of the node

- error - Error that the node raised, if any
- task_id - Task ID that spawned the node
- run_id - D of the run.

- future_kwargs - reserved for future keyword
arguments/backwards compatibility.

run_after_task_execution(*, task_id: str, run_id: str, error: Exception, **future_kwargs)

Rusn after task execution. Finishes task-level spans.
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Parameters:

- task_id - ID of the task, ID of the run.

-run_id - ID of the run

- error - Error the graph raised when running, if any

- future_kwargs - Future keyword arguments for
backwards compatibility

run_before_graph_execution(¥, run_id: str, **future_kwargs: Any)

Runs before graph execution - sets the state so future ones can reference it.

Parameters:
-run_id - ID of the run

- future_kwargs - reserved for future keyword
arguments/backwards compatibility.

run_before_node_execution(*, node_name: str, node_kwargs: Dict[str, Any], node_tags:

Dict[str, Any], task_id: str | None, run_id: str, **future_kwargs: Any)
Runs before a node’s execution. Sets up/stores spans.

Parameters:
- node_name - Name of the node.
- node_kwargs - Keyword arguments of the node.

- node_tags - Tags of the node (they'll get stored as
datadog tags)

- task_id — Task ID that spawned the node
- run_id - ID of the run.

- future_kwargs - reserved for future keyword
arguments/backwards compatibility.

run_before_task_execution(*, task_id: str, run_id: str, **future_kwargs)

Runs before task execution. Sets up the task span.

Parameters:

- task_id - ID of the task
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- run_id - ID of the run,

- future_kwargs - reserved for future keyword
arguments/backwards compatibility.

class hamilton.plugins.h_ddog.AsyncDDOGTracer(root_name: str, include_causal_links: bool =
False, service: str | None = None)
__init__(root_name: str, include_causal_links: bool = False, service: str | None = None)
Creates a AsyncDDOGTracer, the asyncio-friendly version of DDOGTracer.

This has the option to specify some parameters:

Parameters:

- root_name - Name of the root trace/span. Due to the
way datadog inherits, this will inherit an active span.

- include_causal_links - Whether or not to include
span causal links. Note that there are some edge-
cases here, and This is in beta for datadog, and
actually broken in the current client, but it has been
fixed and will be released shortly: https://github.com/
DataDog/dd-trace-py/issues/8049. Furthermore, the
query on datadog is slow for displaying causal links.
We've disabled this by default, but feel free to test it
out - its likely they'll be improving the docum

- service — Service name - will pick it up from the
environment through DDOG if not available.

async post_graph_construct(graph: FunctionGraph, modules: ListfModuleType], config:
Dict[str, Any]) > None
Runs after graph construction. This is a no-op for this plugin.

Parameters:
- graph - Graph that has been constructed.
- modules - Modules passed into the graph

- config - Config passed into the graph

async post_graph_execute(run_id: str, graph: FunctionGraph, success: bool, error: Exception
| None, results: Dict[str, Any] | None) > None
Runs after graph execution. Garbage collects + finishes the root span.
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Parameters:
- run_id - ID of the run, unique in scope of the driver.
- graph - Graph that was executed

-success - Whether or not the graph executed
successfully

- error - Error that was raised, if any

- results - Results of the graph execution

async post_node_execute(run_id: str, node_: Node, success: bool, error: Exception | None,
result: Any, task_id: str [ None = None, **future_kwargs: dict) > None
Runs after a node’s execution — completes the span.

Parameters:
- run_id - ID of the run, unique in scope of the driver.
- node - Node that is being executed

- kwargs - Keyword arguments that are being passed
into the node

-success - Whether or not the node executed
successfully

- error - The error that was raised, if any

- result — The result of the node execution, if no error
was raised

- task_id - ID of the task, defaults to None if not in a
task-based execution

async pre_graph_execute(run_id: str, graph: FunctionGraph, final_vars: List[str], inputs:
Dict[str, Any], overrides: Dict[str, Any]) > None
Runs before graph execution - sets the state so future ones can reference it.

Parameters:
- run_id - ID of the run, unique in scope of the driver.

- graph - Graph that is being executed
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- final_vars - Variables we are extracting from the
graph

- inputs - Inputs to the graph

- overrides - Overrides to graph execution

async pre_node_execute(run_id: str, node_: Node, kwargs: Dict[str, Anyl], task_id: str | None
= None) - None
Runs before a node’s execution. Sets up/stores spans.

Parameters:
- run_id - ID of the run, unique in scope of the driver.
- node - Node that is being executed

- kwargs - Keyword arguments that are being passed
into the node

- task_id — ID of the task, defaults to None if not in a
task setting

lifecycle.FunctionlnputOutputTypeChecker

Use this hook to print out data before/after a node’s execution for debugging

class hamilton.lifecycle.default.FunctioninputOutputTypeChecker(check_input: bool = True,
check_output: bool = True)
This lifecycle hook checks the input and output types of a function.

It is a simple, but very strict type check against the declared type with what was actually
received. E.g. if you don't want to check the types of a dictionary, don’t annotate it with a

type.

__init__(check_input: bool = True, check_output: bool = True)
Constructor.

Parameters:
- check_input - check inputs to all functions

- check_output - check outputs to all functions
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post_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool, error:
Exception | None, result: Any | None, task_id: str | None = None)
Wraps the after_execution method, providing a bridge to an external-facing API. Do
not override this!

pre_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str [ None =
None)
Wraps the before_execution method, providing a bridge to an external-facing API. Do

not override this!

run_after_node_execution(node_name: str, node_tags: Dict[str, Any], node_kwargs: Dict[str,
Anyl, node_return_type: type, result: Any, error: Exception | None, success: bool, task_id: str
| None, run_id: str, **future_kwargs: Any)

Checks that the result type matches the expected node return type.

run_before_node_execution(node_name: str, node_tags: Dict[str, Any], node_kwargs:
Dict[str, Any], node_return_type: type, task_id: str | None, run_id: str, node_input_types:
Dict[str, Any], **future_kwargs: Any)

Checks that the result type matches the expected node return type.

plugins.h_slack.SlackNotifier

Provides a Slack notifier for Apache Hamilton execution. Must have slack_sdk installed to use it:
pip install sf-hamilton[slack] (use quotes if using zsh)

class hamilton.plugins.h_slack.SlackNotifier(api_key: str, channel: str, **kwargs)
This is a adapter that sends a message to a slack channel when a node is executed & fails.

Note: you need to have slack_sdk installed for this to work. If you don’t have it installed, you
can install it with pip install slack_sdk (or pip install sf~-hamilton[slack] - use quotes if
you're using zsh).

from hamilton.plugins import h_slack

dr = (
driver.Builder()
.with_config({})
.with_modules(some_modules)
.with_adapters(h_slack.SlackNotifier(api_key="YOUR_API_KEY",
channel="YOUR_CHANNEL"))
.build()
)
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# and then when you call .execute() or .materialize() you'll get
a message in your slack channel!

__init__(api_key: str, channel: str, **kwargs)
Constructor.

Parameters:
- api_key - API key to use for sending messages.

- channel - Channel to send messages to.

post_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool, error:
Exception | None, result: Any | None, task_id: str | None = None)
Wraps the after_execution method, providing a bridge to an external-facing API. Do
not override this!

pre_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str [ None =
None)
Wraps the before_execution method, providing a bridge to an external-facing API. Do
not override this!

run_after_node_execution(node_name: str, node_tags: Dict[str, Any], node_kwargs: Dict[str,
Anyl, node_return_type: type, result: Any, error: Exception | None, success: bool, task_id: str
| None, run_id: str, **future_kwargs: Any)

Sends a message to the slack channel after a node is executed.

run_before_node_execution(node_name: str, node_tags: Dict[str, Any], node_kwargs:
Dict[str, Any], node_return_type: type, **future_kwargs: Any)
Placeholder required to subclass NodeExecutionMethod

lifecycle.GracefulErrorAdapter

class hamilton.lifecycle.default.GracefulErrorAdapter(error_to_catch: Type[Exception],
sentinel_value: Any = None, try_all_parallel: bool = True, allow_injection: bool = True)
Gracefully handles errors in a graph’s execution. This allows you to proceed despite failure,
dynamically pruning branches. While it still runs every node, it replaces them with no-ops if
any upstream required dependencies fail (including optional dependencies).

_init__(error_to_catch: Type[Exception], sentinel_value: Any = None, try_all_parallel: bool =

True, allow_injection: bool = True)
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Initializes the adapter. Allows you to customize the error to catch (which exception
your graph will throw to indicate failure), as well as the sentinel value to use in place
of a node’s result if it fails (this defaults to None ).

Note that this is currently only compatible with the dict-based result builder (use at
your own risk with pandas series, etc...).

Be careful using None as the default - feel free to replace it with a sentinel value of
your choice (this could negatively impact your graph’s execution if you actually do
intend to use None return values).

You can use this as follows:

# my_module.py

# custom exception

class DoNotProceed(Exception):
pass

def wont_proceed() -> int:
raise DoNotProceed()

def will_proceed() -> int:
return 1

def never_reached(wont_proceed: int) -> int:
return 1 # this should not be reached

dr = (
driver.Builder()
.with_modules(my_module)
.with_adapters(
default.GracefulErrorAdapter(
error_to_catch=DoNotProceed,
sentinel_value=None
)
)
.build()
)
dr.execute(

["will_proceed", "never_reached"]
) # will return {'will_proceed': 1, 'never_reached': None}

Note you can customize the error you want it to fail on and the sentinel value to use
in place of a node’s result if it fails.
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For Parallelizable nodes, this adapter will attempt to iterate over the node outputs. If
an error occurs, the sentinel value is returned and no more iterations over the node
will occur. Meaning if item (3) fails out of 1,2,34,5, 4/5 will not run. If you set
try_all_parallel to be False, it only sends one sentinel value into the parallelize
sub-dag.

Here's an example for parallelizable to demonstrate try_all_parallel:

# parallel_module.py

# custom exception

class DoNotProceed(Exception):
pass

def start_point() -> Parallelizable[int]:
for i in range(5):
if 1 ==
raise DoNotProceed()
vield i

def inner(start_point: int) -> int:
return start_point

def gather(inner: Collect[int]) -> list[int]:
return inner

dr = (
driver.Builder()
.with_modules(parallel_module)
.with_adapters(
default.GracefulErrorAdapter(
error_to_catch=DoNotProceed,
sentinel value=None,
try_all_parallel=True,
)
)
.build()
)
dr.execute(["gather"]) # will return {'gather':
[0,1,2,None]l}

dr = (
driver.Builder()
.with_modules(parallel_module)
.with_adapters(
default.GracefulErrorAdapter(
error_to_catch=DoNotProceed,
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sentinel_value=None,
try_all_parallel=False,

)
)
.build()
)

dr.execute(["gather"]) # will return {'gather

Parameters:
- error_to_catch - The error to catch

- sentinel_value - The sentinel value to use in place of
a node’s result if it fails

- try_all_parallel - Gather parallelizable outputs until a
failure, then add a Sentinel.

- allow_injection - Flag for considering the
accept_error_sentinels tag. Defaults to True.

default.accept_error_sentinels()
Tag a function to allow passing in error sentinels.

[Nonel}

For use with GracefulErrorAdapter . The standard adapter behavior is to skip a node when
an error sentinel is one of its inputs. This decorator will cause the node to run, and place

the error sentinel into the appropriate input.

Take care to ensure your sentinels are easily distinguishable if you do this - see the note in

the GracefulErrorAdapater docstring.

A use case is any data or computation aggregation step that still wants partial results, or

considers a failure interesting enough to log or notify.

SENTINEL = object()

daccept_error_sentinels

def results_gathering(result_1: float, result_2: float) ->

dict[str, Any]:
answer = {}

for name, res in zip(["result 1", "result 2"], [result_1,

result_2])
answer[name] = res
if res is SENTINEL:

answer[name] = "Node failure: no result"
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# You may want side-effects for a failure.
_send_text_that_your_runs_errored()
return answer

adapter = GracefulErrorAdapter(sentinel_value=SENTINEL)

plugins.h_spark.SparkinputValidator

class hamilton.plugins.h_spark.SparkinputValidator
This is a graph hook adapter that allows you to get past a <4.0.0 limitation in spark. Spark
has the option to choose between spark connect and spark, which largely have the same
API. That said, they don't have the proper subclass relationships, which make hamilton fail
on the input type checking.

See the following for more information as to why this is necessary: - https://
community.databricks.com/t5/data-engineering/pyspark-sql-connect-dataframe-dataframe-
vs-pyspark-sql-dataframe/td-p /71055 - https://issues.apache.org/jira/browse/SPARK-47909

You can access an instance of this through the convenience variable SPARK_INPUT_CHECK.
This allows you to bypass that. This has to be used with the driver builder pattern - this will
look as follows:

from hamilton import driver
from hamilton.plugins import h_spark

dr =
driver.Builder().with_modules(...).with_adapters(h_spark.SPARK_INPUT_CHECK)

Then run it as you would normally. Note that in spark==4.0.0, you will only need the spark
session check, not the dataframe check.

do_validate_input(*, node_type: type, input_value: Any) - bool
Validates the input. Treats connect/classic sessios/dataframe as interchangeable.

plugins.h_narhwals.NarwhalsAdapter

Provides a convenience wrapper for the Narwhals library; use the Narwhals decorator underneath.
Must have Narwhals installed to use it:

”

pip install “sf-hamilton[narwhals]


https://community.databricks.com/t5/data-engineering/pyspark-sql-connect-dataframe-dataframe-vs-pyspark-sql-dataframe/td-p/71055
https://community.databricks.com/t5/data-engineering/pyspark-sql-connect-dataframe-dataframe-vs-pyspark-sql-dataframe/td-p/71055
https://community.databricks.com/t5/data-engineering/pyspark-sql-connect-dataframe-dataframe-vs-pyspark-sql-dataframe/td-p/71055
https://issues.apache.org/jira/browse/SPARK-47909
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class hamilton.plugins.h_narwhals.NarwhalsAdapter
Adapter to make it simpler to use narwhals with Hamilton.

from hamilton import base, driver
from hamilton.plugins import h_narwhals
import example

# pandas
dr = (
driver.Builder()
.with_config({"load": "pandas"})
.with_modules(example)
.with_adapters(
h_narwhals.NarwhalsAdapter(),
h_narwhals.NarwhalsDataFrameResultBuilder(
base.PandasDataFrameResult()

),
)
.build()
)

result = dr.execute(
[example.group_by _mean, example.examplel],
inputs={"col_name": "a"}

do_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =
None) - Any
Method that is called to implement node execution. This can replace the execution of
a node with something all together, augment it, or delegate it.

Parameters:
- run_id - ID of the run, unique in scope of the driver.
- node - Node that is being executed

- kwargs - Keyword arguments that are being passed
into the node

- task_id - ID of the task, defaults to None if not in a
task setting

run_to_execute_node(* node_name: str, node_tags: Dict[str, Anyl, node_callable: Any,
node_kwargs: Dict[str, Any], task_id: str | None, **future_kwargs: Any) -> Any
This method is responsible for executing the node and returning the result.

It uses nw_Rkwargs from the node tags to know if any special flags should be passed
to the narwhals decorator function.
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Parameters:

- node_name - Name of the node.

- node_tags - Tags of the node.

- node_callable - Callable of the node.

- node_kwargs - Keyword arguments to pass to the
node.

-task_id - The ID of the task, none if not in a task-
based environment

- future_kwargs - Additional keyword arguments - this
is kept for backwards compatibility

Returns:

The result of the node execution - up to you to return
this.

plugins.h_narhwals.NarwhalsDataFrameResultBuilder

Result builder to be used with the NarwhalsAdapter. Must have Narwhals installed to use it:
pip install “sf-hamilton[narwhals]”

class hamilton.plugins.h_narwhals.NarwhalsDataFrameResultBuilder(result_builder:
ResultBuilder | LegacyResultMixin)
Builds the result. It unwraps the narwhals parts of it and delegates to the passed in result
builder.

from hamilton import base, driver
from hamilton.plugins import h_narwhals, h_polars
import example

# polars
dr = (
driver.Builder()
.with_config({"load": "polars"})
.with_modules(example)
.with_adapters(
h_narwhals.NarwhalsAdapter(),
h_narwhals.NarwhalsDataFrameResultBuilder(
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h_polars.PolarsDataFrameResult()

)
)

.build()
)

result = dr.execute(
["group_by_mean", "examplel"],
inputs={"col_name": "a"

__init__(result_builder: ResultBuilder | LegacyResultMixin)
build_result(**outputs: Any) > Any
Given a set of outputs, build the result.

Parameters:

outputs - the outputs from the execution of the graph.

Returns:

the result of the execution of the graph.

do_build_result(outputs: Dict[str, Anyl) > Any
Implements the do_build_result method from the BaseDoBuildResult class. This is
kept from the user as the public-facing API is build_result, allowing us to change the
API/implementation of the internal set of hooks

input_types() > List[Type[Typell
Gives the applicable types to this result builder. This is optional for backwards
compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() > Type
Returns the output type of this result builder :return: the type that this creates

plugins.h_mlflow.MLFlowTracker

class hamilton.plugins.h_mlflow.MLFlowTracker(tracking_uri: str | None = None, registry_uri: str |
None = None, artifact_location: str | None = None, experiment_name: str = '"Hamilton’',
experiment_tags: dict | None = None, experiment_description: str | None = None, run_id: str |
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None = None, run_name: str | None = None, run_tags: dict | None = None, run_description: str |
None = None, log_system_metrics: bool = False)
Driver adapter logging Hamilton execution results to an MLFlow server.

__init__(tracking_uri: str | None = None, registry_uri: str | None = None, artifact_location:
str | None = None, experiment_name: str = 'Hamilton', experiment_tags: dict | None = None,
experiment_description: str | None = None, run_id: str | None = None, run_name: str | None
= None, run_tags: dict | None = None, run_description: str | None = None,
log_system_metrics: bool = False)

Configure the MLFlow client and experiment for the lifetime of the tracker

Parameters:

- tracking_uri — Destination of the logged artifacts and
metadata. It can be a filesystem, database, or server.
[reference](https://mlflow.org/docs/latest/getting-
started/tracking-server-overview/index.nhtml)

- registry_uri — Destination of the registered models. By
default it's the same as the tracking destination, but
they can be different. [reference](https://mlflow.org/
docs/latest/getting-started/registering-first-model/
index.html)

- artifact_location - Root path on tracking server where
experiment is stored

- experiment_name - MLFlow experiment name used to
group runs.

- experiment_tags - Tags to query experiments
programmatically (not displayed).

- experiment_description - Description of the
experiment displayed

-run_id - Run id to log to an existing run (every
execution logs to the same run)

- run_name - Run name displayed and used to query
runs. You can have multiple runs with the same name
but different run ids.

-run_tags - Tags to query runs and appears as
columns in the Ul for filtering and grouping. It


https://mlflow.org/docs/latest/getting-started/tracking-server-overview/index.html
https://mlflow.org/docs/latest/getting-started/tracking-server-overview/index.html
https://mlflow.org/docs/latest/getting-started/registering-first-model/index.html
https://mlflow.org/docs/latest/getting-started/registering-first-model/index.html
https://mlflow.org/docs/latest/getting-started/registering-first-model/index.html
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automatically includes serializable inputs and Driver
config.

- run_description - Description of the run displayed

- log_system_metrics - Log system metrics to display
(requires additonal dependencies)

post_graph_construct(*, graph: FunctionGraph, modules: ListfModuleType], config: Dict[str,

Any])
Hooks that is called after the graph is constructed.

Parameters:
- graph - Graph that has been constructed.
- modules - Modules passed into the graph

- config - Config passed into the graph

post_graph_execute(*, run_id: str, graph: FunctionGraph, success: bool, error: Exception |

None, results: Dict[str, Any] | None)
Just delegates to the interface method, passing in the right data.

post_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool, error:
Exception | None, result: Any | None, task_id: str | None = None)
Wraps the after_execution method, providing a bridge to an external-facing API. Do

not override this!

pre_graph_execute(*, run_id: str, graph: FunctionGraph, final_vars: List[str], inputs: Dict[str,
Any], overrides: Dict[str, Any])
Implementation of the pre_graph_execute hook. This just converts the inputs to the
format the user-facing hook is expecting — performing a walk of the DAG to pass in the

set of nodes to execute. Delegates to the interface method.

pre_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str [ None =
None)
Wraps the before_execution method, providing a bridge to an external-facing API. Do
not override this!

run_after_graph_construction(*, config: dict[str, Any], **kwargs)

Store the Driver config before creating the graph

run_after_graph_execution(success: bool, *args, **kwargs)
End the MLFlow run
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run_after_node_execution(*, node_name: str, node_return_type: Type, node_tags: dict,
node_kwargs: dict, result: Any, **kwargs)
Log materializers and final vars as artifacts

run_before_graph_execution(¥, run_id: str, final_vars: List[str], inputs: Dict[str, Any], graph:
HamiltonGraph, **kwargs)
Create and start MLFlow run. Log graph version, run_id, inputs, overrides

run_before_node_execution(*args, **kwargs)
Placeholder required to subclass NodeExecutionHook

lifecycle.NoEdgeAndInputTypeChecking

Use this hook turn off edge and input type checking during graph construction and execution; the
only time you'd really want this is during some really fast and loose development. Otherwise
production use of this should be frowned upon.

class hamilton.lifecycle.default.NoEdgeAndInputTypeChecking

Permissive adapter to help you skip edge and input type checking.

Useful for development.

from hamilton import driver
from hamilton.lifecycle import NoEdgeAndInputTypeChecking

dr =
driver.Builder().with_adapters(NoEdgeAndInputTypeChecking()).build()

# now driver 1is built without any type checking
dr.execute([...], ...)

check_edge_types_match(type_from: type, type_to: type, **kwargs: Any) - bool
This is run to check if edge types match. Note that this is an OR functionality - this is
run after we do some default checks, so this can only be permissive. Return True -
always

do_check_edge_types_match(*, type_from: type, type_to: type) - bool

Wraps the check_edge_types_match method, providing a bridge to an external-facing
API. Do not override this!

do_validate_input(*, node_type: type, input_value: Any) - bool
Wraps the validate_input method, providing a bridge to an external-facing API. Do not
override this!
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validate_input(node_type: type, input_value: Any, **kwargs: Any) - bool
This is run to check if the input is valid for the node type. Note that this is an OR
functionality — this is run after we do some default checks, so this can only be
permissive. Returns True - always.

plugins.h_openlineage.OpenLineageAdapter

class hamilton.plugins.h_openlineage.OpenLineageAdapter(client: OpenLineageClient,
namespace: str, job_name: str)
This adapter emits OpenlLineage events.

# create the openlineage client
from openlineage.client import OpenLineageClient

# write to file
from openlineage.client.transport.file import FileConfig,
FileTransport
file_config = FileConfig(
log_file_path="/path/to/your/file",
append=False,

)

client = OpenLineageClient(transport=FileTransport(file_config))

# write to HTTP, e.g. marquez
client = OpenLineageClient(url="http://localhost:5000")

# create the adapter
adapter = OpenLineageAdapter(client, "my_namespace",
"my_job_name")

# add to Hamilton
# import your pipeline code

dr =
driver.Builder().with_modules(YOUR_MODULES).with_adapters(adapter).build()
# execute as normal -- and openlineage events will be emitted

dr.execute(...)

Note for data lineage to be emitted, you must use the “materializer” abstraction to provide
metadata. See https://hamilton.apache.org/concepts/materialization/. This can be done via
the @datasaver() and @dataloader() decorators, or using the @load_from or @save_to
decorators, as well as passing in data savers and data loaders via .with_materializers() on
the Driver Builder, or via .materialize() on the driver object.

__init__(client: OpenLineageClient, namespace: str, job_name: str)
Constructor. You pass in the OLClient.


https://hamilton.apache.org/concepts/materialization/
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Parameters:
- self
- client
- namespace

- job_name

Returns:

post_graph_execute(run_id: str, graph: FunctionGraph, success: bool, error: Exception |
None, results: Dict[str, Any] | None)
Emits a Run COMPLETE or FAIL event.

Parameters:
- run_id
- graph
- success
- error

- results

Returns:

post_node_execute(run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool, error:
Exception | None, result: Any | None, task_id: str | None = None)
Run Event: will emit a RUNNING event with updates on input/outputs.

A Job Event will be emitted for graph execution, and additional SQLjob facet if data
was loaded from a SQL source.

A Dataset Event will be emitted if a dataloader or datasaver was used:
- input data set if loader
- output data set if saver
- appropriate facets will be added to the dataset where it makes sense.

TODO: attach statistics facets
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Parameters:
- run_id

- node

- kwargs

- success

- error

- result

- task_id

Returns:

pre_graph_execute(run_id: str, graph: FunctionGraph, final_vars: List[str], inputs: Dict[str,
Any], overrides: Dict[str, Any])
Emits a Run START event. Emits a Job Event with the sourceCode Facet for the entire
DAG as the job.

Parameters:
- run_id
- graph
- final_vars
- inputs

- overrides

Returns:

pre_node_execute(run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str [ None =
None)
No event emitted.
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ResultBuilders

This section helps determine what comes out of the box for determining how to construct a return
type from execute .

Reference

Generic

Result builders help you augment what is returned by the driver’'s execute() function. Here are the
generic ones.

class hamilton.base.ResultMixin
Legacy result builder - see lifecycle methods for more information.

class hamilton.base.DictResult
Simple function that returns the dict of column -> value results.

It returns the results as a dictionary, where the keys map to outputs requested, and values
map to what was computed for those values.

Use this when you want to:
1. debug dataflows.
2. have heterogeneous return types.

3. Want to manually transform the result into something of your choosing.

from hamilton import base, driver

dict_builder = base.DictResult()

adapter = base.SimplePythonGraphAdapter(dict_builder)
dr = driver.Driver(config, *modules, adapter=adapter)
dict_result = dr.execute([...], inputs=...)

Note, if you just want the dict result + the SimplePythonGraphAdapter, you can use the
DefaultAdapter
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adapter = base.DefaultAdapter()

static build_result(**outputs: Dict[str, Any]) - Dict
This function builds a simple dict of output -> computed values.

input_types() - List[Type[Type]l | None
Gives the applicable types to this result builder. This is optional for backwards
compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() - Type
Returns the output type of this result builder :return: the type that this creates

Numpy
class hamilton.base.NumpyMatrixResult
Mixin for building a Numpy Matrix from the result of walking the graph.

All inputs to the build_result function are expected to be numpy arrays.

from hamilton import base, driver
adapter = base.SimplePythonGraphAdapter(base.NumpyMatrixResult())

dr = driver.Driver(config, *modules, adapter=adapter)
numpy_matrix = dr.execute([...], inputs=...)

static build_result(**outputs: Dict[str, Any]) > matrix
Builds a numpy matrix from the passed in, inputs.

Note: this does not check that the inputs are all numpy arrays/array like things.
Parameters:

outputs - function_name -> np.array.

Returns:

numpy matrix
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Pandas

class hamilton.base.PandasDataFrameResult
Mixin for building a pandas dataframe from the result.

It returns the results as a Pandas Dataframe, where the columns map to outputs requested,
and values map to what was computed for those values. Note: this only works if the
computed values are pandas series, or scalar values.

Use this when you want to create a pandas dataframe.

Example:

from hamilton import base, driver

df_builder = base.PandasDataFrameResult()

adapter = base.SimplePythonGraphAdapter(df_builder)
dr = driver.Driver(config, *modules, adapter=adapter)
df = dr.execute([...], inputs=...)

static build_result(**outputs: Dict[str, Any]) - DataFrame
Builds a Pandas DataFrame from the outputs.

This function will check the index types of the outputs, and log warnings if they don't
match. The behavior of pd.Dataframe(outputs) is that it will do an outer join based on
indexes of the Series passed in.

Parameters:

outputs - the outputs to build a dataframe from.

class hamilton.base.StrictindexTypePandasDataFrameResult
A ResultBuilder that produces a dataframe only if the index types match exactly.

Note: If there is no index type on some outputs, e.g. the value is a scalar, as long as there
exists a single pandas index type, no error will be thrown, because a dataframe can be
easily created.

Use this when you want to create a pandas dataframe from the outputs, but you want to
ensure that the index types match exactly.

To use:
from hamilton import base, driver

strict_builder = base.StrictIndexTypePandasDataFrameResult()
adapter = base.SimplePythonGraphAdapter(strict_builder)
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dr driver.Driver(config, *modules, adapter=adapter)
df = dr.execute([...], inputs=...) # this will now error if
index types mismatch.

static build_result(**outputs: Dict[str, Any]) - DataFrame
Builds a Pandas DataFrame from the outputs.

This function will check the index types of the outputs, and log warnings if they don’t
match. The behavior of pd.Dataframe(outputs) is that it will do an outer join based on
indexes of the Series passed in.

Parameters:

outputs - the outputs to build a dataframe from.

Polars

class hamilton.plugins.h_polars.PolarsDataFrameResult
A ResultBuilder that produces a polars dataframe.

Use this when you want to create a polars dataframe from the outputs. Caveat: you need to
ensure that the length of the outputs is the same, otherwise you will get an error; mixed
outputs aren’t that well handled.

To use:

from hamilton import base, driver
from hamilton.plugins import polars_extensions

polars_builder = polars_extensions.PolarsDataFrameResult()
adapter = base.SimplePythonGraphAdapter(polars_builder)

dr = driver.Driver(config, *modules, adapter=adapter)

df = dr.execute([...], inputs=...) # returns polars dataframe

Note: this is just a first attempt at something for Polars. Think it should handle more? Come
chat/open a PR!

build_result(**outputs: Dict[str, Series | DataFrame | Any]) - DataFrame
This is the method that Hamilton will call to build the final result. It will pass in the
results of the requested outputs that you passed in to the execute() method.

Note: this function could do smarter things; looking for contributions here!
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Parameters:
outputs - The results of the requested outputs.
Returns:
a polars DataFrame.
Dask

class hamilton.plugins.h_dask.DaskDataFrameResult

static build_result(**outputs: Dict[str, Any]) > Any
Builds a dask dataframe from the outputs.

This has some assumptions:
1. the order specified in the output will mirror the order of “joins” here.

2. it tries to massage types into dask types where it can

3. otherwise it duplicates any “scalars/objects” using the first valid input with
an index as the template. It assumes a single partition.

plugins.h_pyarrow.PyarrowTableResult

class hamilton.plugins.h_pyarrow.PyarrowTableResult

Add this result builder to a materializer's combine statement to convert your dataframe
object to a pyarrow representation and make it compatible with pyarrow DataSavers.

It implicitly support input_type == Any, but it expects dataframe objects implementing the
dataframe interchange protocol: ref: https://arrow.apache.org/docs/python/
interchange_protocol.html for example: - pandas - polars - dask - vaex - ibis - duckdb
results

build_result(**outputs: Any) - Any
This function converts objects implementing the __dataframe__ protocol to a pyarrow
table. It doesn’t support receiving multiple outputs because it can't handle any
joining logic.

ref: https://arrow.apache.org/docs/python/interchange_protocol.html

do_build_result(outputs: Dict[str, Any]) > Any


https://arrow.apache.org/docs/python/interchange_protocol.html
https://arrow.apache.org/docs/python/interchange_protocol.html
https://arrow.apache.org/docs/python/interchange_protocol.html
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Implements the do_build_result method from the BaseDoBuildResult class. This is
kept from the user as the public-facing API is build_result, allowing us to change the
API/implementation of the internal set of hooks

input_types() > List[Type[Typell
Gives the applicable types to this result builder. This is optional for backwards
compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() - Type
Returns the output type of this result builder :return: the type that this creates

Custom ResultBuilder

If you have a use case for a custom ResultBuilder, tell us on Slack or via a GitHub issues. Knowing
about your use case and talking through help ensures we aren’t duplicating effort, and that it'll be
using part of the APl we don’t intend to change.

What you need to do

You need to implement a class that implements a single function - see GitHub:

class ResultBuilder(object):
"""Base class housing the result builder
@abc.abstractmethod
def build_result(self, =*=xoutputs: typing.Dict[str, typing.Any]) -
> typing.Any:
"""This function builds the result given the computed

values.
pass

For example:

import typing
from hamilton import lifecycle
class MyCustomBuilder(lifecycle.ResultBuilder):

# add a constructor if you need to

astaticmethod

def build_result(**outputs: typing.Dict[str, typing.Any]) ->
YOUR_RETURN_TYPE:

"""Custom function you fill in"""


https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://github.com/apache/hamilton/issues/new?assignees=&labels=&projects=&template=feature_request.md&title=
https://github.com/apache/hamilton/blob/main/hamilton/base.py#L18-L28
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# your logic would go here
return OBJECT_OF_YOUR_CHOOSING

How to use it

You would then have the option to pair that with a graph adapter that takes in a ResultMixin
object. E.g. SimplePythonGraphAdapter . See GraphAdapters for which ones take in a custom
ResultMixin object.

You can pass the result builder or a graph adapters to the
driver.Builder(result_builder).with_adapters(...) function.
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This section contains any information about I/O within Apache Hamilton. If you're using
materializers or the save_to/load_from decorator, you'll need this page to help you find the set of
available loading/saving targets.

Reference

Using Data Adapters

This is an index of all the available data adapters, both savers and loaders. Note that some savers
and loaders are the same (certain classes can handle both), but some are different. You will want
to reference this when calling out to any of the following:

1. Using save_to [or for just exposing metadata datasaver].
2. Using load_from [or for just exposing metadata dataloader].
3. Using materializers.

To read these tables, you want to first look at the key to determine which format you want - these
should be human-readable and familiar to you. Then you'll want to look at the types field to figure
out which is the best for your case (the object you want to load from or save to).

Finally, look up the adapter params to see what parameters you can pass to the data adapters.
The optional params come with their default value specified.

If you want more information, click on the module, it will send you to the code that implements it
to see how the parameters are used.

As an example, say we wanted to save a pandas dataframe to a CSV file. We would first find the
key csv, which would inform us that we want to call save_to.csv (or to.csv in the case of
materialize). Then, we would look at the types field, finding that there is a pandas dataframe
adapter. Finally, we would look at the params field, finding that we can pass path, and (optionally)
sep (which we'd realize defaults to, when looking at the code).

All together, we'd end up with:
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import pandas as pd
from hamilton.function_modifiers import value, save_to

dsave_to.csv(path=value("my_file.csv"))
def my_data(...) -> pd.DataFrame:

For a less “abstracted” approach, where you just expose metadata from saving and loading, you
can annotated your saving/loading functions to do so, e.g. analogous to the above you could do:

import pandas as pd
from hamilton.function_modifiers import datasaver

def my_data(...) -> pd.DataFrame:
# your function

return _df # return some df

adatasaver
def my_data_saver(my_data: pd.DataFrame, path: str) -> dict:
# code to save my_data
return {"path": path, "type": "csv", ...} # add other metadata

See dataloader for more information on how to load data and expose metadata via this more
lighter weight way.

If you want to extend the @save_to or @load_from decorators, see Using Data Adapters for
documentation, and the example in the repository for an example of how to do so.

Note that you will need to call registry.register_adapters (or import a module that does that) prior
to dynamically referring to these in the code - otherwise we won't know about them, and won't be
able to access that key!

Data Loaders

key loader params types module
json hamilton.io.default_data.
path str dict
list

json hamilton.plugins.pandas.


https://github.com/apache/hamilton/blob/main/examples/materialization/README.md
https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L30-L45
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L551-L632
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key

json

loader params

filepath_or_buffer Union chunksize
Optional=None conqpressk)n Union=infer
convert_axes Optional=None convert_dates
Union=True date_unit Optional=None dtype
Union=None dtype_backend Optional=None
encoding Optional=None encoding_errors
Optional=strict engine str=ujson
keep_default_dates bool=True lines
bool=False nrows Optional=None orient
Optional=None predse_ﬂoat bool=False
storage_options Optional=None typ

str=frame

types

DataFrame

DataFrame

module

hamilton.plugins.polars_|


https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L509-L540

/0

loader params

source Union schema

collections.abc.Mapping[str,
typing.Union[ForwardRef( 'DataTypeClass'),

ForwardRef('DataType'), typelint],
type[float], type[booll], typel[str],
type['date'], type['time'],

type[ 'datetime'],
typel[list[typing.Any]],

type[ 'timedelta'],

type[tuple[typing.Any, ...11, typel[bytes],
type[object], type['Decimal'], typel[Nonel],
NoneTypel]l | collections.abc.Sequence[str
| tuple[str,
typing.Union[ForwardRef( 'DataTypeClass'),

ForwardRef('DataType'), typelint],
type[float], type[bool], typel[str],
typel[ 'date'], typel[ 'time'],

typel[ 'datetime'], type[ 'timedelta'],
type[list[typing.Any]ll],

type[tuple[typing.Any, ...11, typel[bytes],
typelobject], type['Decimal'], type[Nonel,

NoneTypel]l]=None

schema_overrides

collections.abc.Mapping[str,
typing.Union[ForwardRef('DataTypeClass'),

ForwardRef('DataType'), typel[int],
type[float], type[bool], type[str],
type['date'], type[ 'time'],

type[ 'datetime'],
typel[list[typing.Any]],

type[ 'timedelta'],

type[tuple[typing.Any, ...]], typel[bytes],
type[object], type['Decimal'], typel[Nonel],
NoneTypel]l | collections.abc.Sequence[str
| tuple[str,
typing.Union[ForwardRef( 'DataTypeClass'),

ForwardRef('DataType'), typelint],
type[float], type[bool], typel[str],
type['date'], typel[ 'time'],

type[ 'datetime'], type[ 'timedelta'],
type[list[typing.Any]l],

type[tuple[typing.Any, ...11, typel[bytes],
typelobject], type['Decimal'], type[Nonel,

NoneType]l]]l=None

types

module



hamilton.plugins.xgboost

hamilton.io.default_data.

hamilton.io.default_data.

hamilton.plugins.lightgbr

hamilton.io.default_data.

hamilton.plugins.pandas.

hamilton.io.default_data

hamilton.plugins.yaml_e»
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key loader params types module
json
path Union XGBModel
Booster
literal
value Any Any
file
path str encoding str=utf-8 str
file
path Union LGBMModel
Booster
CVBooster
pickle
path str object
Any
pickle
filepath_or_buffer Union=None path DataFrame
Union=None compression Union=infer
storage_options Optional=None
environment
names Tuple dict
yaml
path Union str int
float
bool
dict
list
npy

ndarray

hamilton.plugins.numpy_


https://github.com/apache/hamilton/blob/main/hamilton/plugins/xgboost_extensions.py#L57-L78
https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L177-L191
https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L65-L81
https://github.com/apache/hamilton/blob/main/hamilton/plugins/lightgbm_extensions.py#L66-L86
https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L126-L141
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L460-L510
https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L161-L175
https://github.com/apache/hamilton/blob/main/hamilton/plugins/yaml_extensions.py#L35-L54
https://github.com/apache/hamilton/blob/main/hamilton/plugins/numpy_extensions.py#L62-L92
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key

csv

csv

/0

loader params types

path Union mmap_mode Optional=None
allow_pickle Optional=None fix_imports
Optional=None encoding Literal=ASCII

path Union sep Optional=, delimiter DataFrame
Optional=None header Union=infer names
Optional=None index_col Union=None
usecols Union=None dtype Union=None engine
Optional=None converters Optional=None
true_values Optional=None false_values
Optional=None skipinitialspace
Optional=False skiprows Union=None
skipfooter int=0 nrows Optional=None
na_values Union=None keep_default_na
bool=True na_filter bool=True verbose
bool=False skip_blank_lines bool=True
parse_dates Union=False keep_date_col
bool=False date_format Optional=None
dayfirst bool=False cache_dates bool=True
iterator bool=False chunksize
Optional=None compression Union=infer
thousands Optional=None decimal str=.
lineterminator Optional=None quotechar
Optional=None quoting int=0 doublequote
bool=True escapechar Optional=None
comment Optional=None encoding
str=utf-8 encoding_errors Union=strict
dialect Union=None on_bad_lines
Union=error delim_whitespace bool=False
low_memory bool=True memory_map
bool=False float_precision Optional=None
storage_options Optional=None
dtype_backend Literal=numpy_nullable

DataFrame

module

hamilton.plugins.pandas.

hamilton.plugins.polars_|


https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L106-L273
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L78-L184
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key loader params types module

file Union has_header bool=True
include_header bool=True columns
Union=None new_columns Sequence=None
separator str=, comment_char str=None
quote_char str=" skip_rows int=0 dtypes
Union=None null_values Union=None
missing_utf8_is_empty_string bool=False
ignore_errors bool=False try_parse_dates
bool=False n_threads int=None
infer_schema_length int=100 batch_size
int=8192 n_rows int=None encoding
Union=utf8 low_memory bool=False
rechunk bool=True use_pyarrow bool=False
storage_options Dict=None
skip_rows_after_header int=0
row_count_name str=None row_count_offset
int=0 sample_size int=1024 eol_char
str= raise_if_empty bool=True

csv hamilton.plugins.polars_|
file Union has_header bool=True columns LazyFrame

Union=None new_columns Sequence=None
separator str=, comment_char str=None

quote_char str=" skip_rows int=0 dtypes
Union=None null_values Union=None
missing_utf8_is_empty_string bool=False
ignore_errors bool=False try_parse_dates
bool=False n_threads int=None
infer_schema_length int=100 batch_size
int=8192 n_rows int=None encoding
Union=utf8 low_memory bool=False
rechunk bool=True use_pyarrow bool=False
storage_options Dict=None
skip_rows_after_header int=0
row_count_name str=None row_count_offset
int=0 eol_char str= raise_if_empty
bool=True


https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_lazyframe_extensions.py#L92-L192
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key

csv

parquet

parquet

parquet

parquet

sql

loader params

spark SparkSession path str header
bool=True sep str=,

path Union engine Literal=auto columns
Optional=None storage_options
Optional=None use_nullable_dtypes
bool=False dtype_backend
Literal=numpy_nullable ﬁlesysten1
Optional=None filters Union=None

file Union columns Union=None n_rows
int=None use_pyarrow bool=False
memory_map bool=True storage_options
Dict=None parauel Any=auto
row_count_name str=None row_count_offset
int=0 lovv_nqen1ory bool=False
pyarrow_options Dict=None use_statistics
bool=True rechunk bool=True

file Union columns Union=None n_rows
int=None use_pyarrow bool=False
memory_map bool=True storage_options
Dict=None parauel Any=auto
row_count_name str=None row_count_offset
int=0 lovv_nqen1ory bool=False
use_statistics bool=True rechunk bool=True

spark SparkSession path str

types

DataFrame

DataFrame

DataFrame

LazyFrame

DataFrame

DataFrame

module

hamilton.plugins.spark_e

hamilton.plugins.pandas.

hamilton.plugins.polars_|

hamilton.plugins.polars_|

hamilton.plugins.spark_e

hamilton.plugins.pandas.


https://github.com/apache/hamilton/blob/main/hamilton/plugins/spark_extensions.py#L52-L68
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L365-L413
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L249-L310
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_lazyframe_extensions.py#L194-L248
https://github.com/apache/hamilton/blob/main/hamilton/plugins/spark_extensions.py#L70-L82
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L701-L758
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key loader params types module

query_or_table str db_connection Union
chunksize Optional=None coerce_float
bool=True columns Optional=None dtype
Union=None dtype_backend Optional=None
index_col Union=None params Union=None
parse_dates Union=None

xml hamilton.plugins.pandas.
path_or_buffer Union xpath Optional=./+ DataFrame

namespace Optional=None elems_only
Optional=False attrs_only Optional=False
names Optional=None dtype Optional=None
converters Optional=None parse_dates
Union=False encoding Optional=utf-8
parser str=1xml stylesheet Union=None
iterparse Optional=None compression
Union=infer storage_options
Optional=None dtype_backend
str=numpy_nullable

html hamilton.plugins.pandas.
jo Union match Optional=.+ flavor DataFrame

Union=None header Union=None index_col
Union=None skiprows Union=None attrs
Optional=None parse_dates Optional=None
thousands Optional=, encoding
Optional=None decimal str=. converters
Optional=None na_values Iterable=None
keep_default_na bool=True displayed_only
bool=True extract_links Optional=None
dtype_backend Literal=numpy_nullable
storage_options Optional=None

stata hamilton.plugins.pandas.
DataFrame


https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L816-L893
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L968-L1046
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1141-L1203
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key

feather

feather

feather

orc

excel

loader params

filepath_or_buffer Union convert_dates
bool=True convert_categoricals bool=True
index_col Optional=None convert_missing
bool=False preserve_dtypes bool=True
columns Optional=None order_categoricals

bool=True chunksize Optional=None jterator

bool=False con1pression Union=infer
storage_options Optional=None

path Union columns Optional=None
use_threads bool=True storage_options
Optional=None dtype_backend
Literal=numpy_nullable

source Union columns Union=None n_rows
Optional=None use_pyarrow bool=False
memory_map bool=True storage_options
Optional=None row_count_name
Optional=None row_count_offset int=0
rechunk bool=True

source Union columns Union=None n_rows
Optional=None use_pyarrow bool=False
memory_map bool=True storage_options
Optional=None row_count_name
Optional=None row_count_offset int=0
rechunk bool=True

path Union columns Optional=None
dtype_backend Literal=numpy_nullable
filesystem Union=None

types

DataFrame

DataFrame

LazyFrame

DataFrame

module

hamilton.plugins.pandas.

hamilton.plugins.polars_|

hamilton.plugins.polars_|

hamilton.plugins.pandas.

hamilton.plugins.pandas.


https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1267-L1306
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L360-L410
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_lazyframe_extensions.py#L250-L298
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1353-L1390
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1429-L1496
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key

table

loader params

path Union=None sheet_name Union=0
header Union=0 names Optional=None
index_col Union=None usecols Union=None
dtype Union=None engine Optional=None
converters Union=None true_values
Optional=None false_values Optional=None
skiprows Union=None nrows Optional=None
keep_default_na bool=True na_filter
bool=True verbose bool=False parse_dates
Union=False date_format Union=None
thousands Optional=None decimal str=.
comment Optional=None skipfooter int=0
storage_options Optional=None
dtype_backend Literal=numpy_nullable
engine_kwargs Optional=None

types

DataFrame

DataFrame

module

hamilton.plugins.pandas.


https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1577-L1657
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key loader params types module

filepath_or_buffer Union sep Optional=None
delimiter Optional=None header
Union=infer names Optional=None
index_col Union=None usecols
Optional=None dtype Union=None engine
Optional=None converters Optional=None
true_values Optional=None false_values
Optional=None skipinitialspace bool=False
skiprows Union=None skipfooter int=0 nrows
Optional=None na_values Union=None
keep_default_na bool=True na_filter
bool=True verbose bool=False
skip_blank_lines bool=True parse_dates
Union=False infer_datetime_format
bool=False keep_date_col bool=False
date_parser Optional=None date_format
Optional=None dayﬁrst bool=False
cache_dates bool=True jterator bool=False
chunksize Optional=None compression
Union=infer thousands Optional=None
decimal str=. lineterminator Optional=None
quotechar Optional=" quoting int=0
doublequote bool=True escapechar
Optional=None comment Optional=None
encoding Optional=None encoding_errors
Optional=strict dialect Optional=None
on_bad_lines Union=error delim_whitespace
bool=False low_memory bool=True
memory_map bool=False float_precision
Optional=None storage_options
Optional=None dtype_backend
Literal=numpy_nullable

fwf hamilton.plugins.pandas.
filepath_or_buffer Union colspecs DataFrame

Union=infer widths Optional=None
infer_nrows int=100 dtype_backend
Literal=numpy_nullable


https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1659-L1695
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key

spss

avro

ndjson

loader params

path Union usecols Union=None
convert_categoricals bool=True
dtype_backend Literal=numpy_nullable

file Union columns Union=None n_rows
Optional=None

types

DataFrame

DataFrame

DataFrame

module

hamilton.plugins.pandas.

hamilton.plugins.polars_|

hamilton.plugins.polars_|


https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1697-L1732
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L444-L475
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L567-L598
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key loader params types module
source Union schema
collections.abc.Mapping[str,
typing.Union[ForwardRef( 'DataTypeClass'),
ForwardRef('DataType'), typelint],
type[float], type[booll], typel[str],
type['date'], type['time'],
type[ 'datetime'], type[ 'timedelta'],
typel[list[typing.Any]],
type[tuple[typing.Any, ...11, typel[bytes],
type[object], type['Decimal'], typel[Nonel],
NoneTypel]l | collections.abc.Sequence[str
| tuple[str,
typing.Union[ForwardRef( 'DataTypeClass'),
ForwardRef('DataType'), typelint],
type[float], type[bool], typel[str],
typel[ 'date'], typel[ 'time'],
typel[ 'datetime'], type[ 'timedelta'],
type[list[typing.Any]ll],
type[tuple[typing.Any, ...11, typel[bytes],
typelobject], type['Decimal'], type[Nonel,
NoneTypel]l]=None
schema_overrides
collections.abc.Mapping[str,
typing.Union[ForwardRef('DataTypeClass'),
ForwardRef('DataType'), typel[int],
type[float], type[bool], type[str],
type['date'], type[ 'time'],
type[ 'datetime'], type[ 'timedelta'],
typel[list[typing.Any]],
type[tuple[typing.Any, ...]], typel[bytes],
type[object], type['Decimal'], typel[Nonel],
NoneTypel]l | collections.abc.Sequence[str
| tuple[str,
typing.Union[ForwardRef( 'DataTypeClass'),
ForwardRef('DataType'), typelint],
type[float], type[bool], typel[str],
type['date'], typel[ 'time'],
type[ 'datetime'], type[ 'timedelta'],
type[list[typing.Any]l],
type[tuple[typing.Any, ...11, typel[bytes],
typelobject], type['Decimal'], type[Nonel,
NoneType]l]]l=None

database

DataFrame

hamilton.plugins.polars_|


https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L784-L829
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key loader params types module

query str connection Union iter_batches
bool=False batch_size Optional=None
schema_overrides Optional=None
infer_schema_length Optional=None
execute_options Optional=None

spreadsheet hamilton.plugins.polars_|
source Union sheet_id Union=None DataFrame

sheet_name Union=None engine
Literal=xlsx2csv engine_options
Optional=None read_options Optional=None
schema_overrides Optional=None
raise_if_empty bool=True

dlt hamilton.plugins.dlt_exte
resource DltResource DataFrame

mlflow _ hamilton.plugins.mlflow_
model_uri Optional=None mode Any

Literal=tracking run_id Optional=None
path Union=model model_name
Optional=None version Union=None
version_alias Optional=None flavor
Union=None mlﬂow_kwargs Dict=None

Data Savers

key saver params types module

json hamilton.io.default_data_loaders
path str dict list

json hamilton.plugins.pandas_extensio

DataFrame


https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L625-L672
https://github.com/apache/hamilton/blob/main/hamilton/plugins/dlt_extensions.py#L57-L95
https://github.com/apache/hamilton/blob/main/hamilton/plugins/mlflow_extensions.py#L112-L202
https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L47-L63
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L634-L699
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key

json

json

file

file

file

/0

saver params

filepath_or_buffer

Union compression

str=infer

date_format

str=epoch date_unit

str=ms

default_handler

Optional=None

double_precision

int=10 force_ascii

bool=True index
Optional=None
indent int=0 lines
bool=False mode
str=w orient
Optional=None
storage_options
Optional=None

file Union

path Union

path str encoding
str=utf-8

path Union

types

DataFrame LazyFrame

XGBModel Booster

str

bytes BytesIO

LGBMModel Booster
CVBooster

module

hamilton.plugins.polars_post_1_0_

hamilton.plugins.xgboost_extensi

hamilton.io.default_data_loaders

hamilton.io.default_data_loaders

hamilton.plugins.lightgbm_extens


https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L542-L565
https://github.com/apache/hamilton/blob/main/hamilton/plugins/xgboost_extensions.py#L36-L55
https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L83-L100
https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L102-L124
https://github.com/apache/hamilton/blob/main/hamilton/plugins/lightgbm_extensions.py#L36-L64
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key

pickle

pickle

memory

yaml

plt

saver params types

path Union
num_iteration
Optional=None
start_iteration
int=0
importance_type
Literal=split

path str object

path Union DataFrame
compression
Union=infer
protocol int=5
storage_options

Optional=None

Any
path Union str int float
dict list

Figure

module

hamilton.io.default_data_loaders

hamilton.plugins.pandas_extensio

hamilton.io.default_data_loaders

hamilton.plugins.yaml_extensions
bool

hamilton.plugins.matplotlib_exter


https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L143-L159
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L515-L549
https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L193-L210
https://github.com/apache/hamilton/blob/main/hamilton/plugins/yaml_extensions.py#L56-L75
https://github.com/apache/hamilton/blob/main/hamilton/plugins/matplotlib_extensions.py#L34-L96
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key

npy

csv

/0

saver params types

path Union dpi
Union=None format
Optional=None
metadata
Optional=None
bbox_inches
Union=None
pad_inches
Union=None
facecolor
Union=None
edgecolor
Union=None bhackend
Optional=None
orientation
Optional=None
papeﬂype
Optional=None
transparent
Optional=None
bbox_extra_artists
Optional=None
pil_kwargs

Optional=None

path Union ndarray
allow_pickle

Optional=None
fix_imports

Optional=None

DataFrame

module

hamilton.plugins.numpy_extensiol

hamilton.plugins.pandas_extensio


https://github.com/apache/hamilton/blob/main/hamilton/plugins/numpy_extensions.py#L34-L60
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L275-L363
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key

csv

/0

saver params types

path Union sep
Optional=, na_rep
str= float_format
Union=None columns
Optional=None
header Union=True
index
Optional=False
index_label
Union=None mode
str=w encoding
Optional=None
compression
Union=infer
quoting
Optional=None
quotechar
Optional="
lineterminator
Optional=None
chunksize
Optional=None
date_format
Optional=None
doublequote
bool=True
escapechar
Optional=None
decimal str=. errors
str=strict
storage_options

Optional=None

DataFrame LazyFrame

module

hamilton.plugins.polars_post_1_0_


https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L186-L247
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key

parquet

parquet

saver params types

file Union
include_header
bool=True separator
str=,
line_terminator

str= quote_char
str=" batch_size
int=1024
datetime_format
str=None
date_format
str=None
time_format
str=None
float_precision
int=None null_value
str=None
quote_style
Type=None

path Union engine DataFrame

Literal=auto
compression
Optional=snappy
index
Optional=None
partition_cols
Optional=None
storage_options
Optional=None
extra_kwargs
Optional=None

DataFrame

LazyFrame

module

hamilton.plugins.pandas_extensio

hamilton.plugins.polars_post_1_0_


https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L415-L458
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L312-L358
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sql

xml

/0

saver params types

file Union
compression
Any=zstd
compression_level
int=None statistics
bool=False
row_group_size
int=None
use_pyarrow
bool=False

pyarrow_options

Dict=None

table_name str DataFrame
db_connection Any
chunksize
Optional=None
dtype Union=None
if_exists str=fail
index bool=True
index_label
Union=None method
Union=None schema
Optional=None

DataFrame

module

hamilton.plugins.pandas_extensio

hamilton.plugins.pandas_extensio


https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L760-L814
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L895-L966

558

/0

key

html

saver params types

path_or_buffer
Union index
bool=True
root_name
str=data row_name
str=row na_rep
Optional=None
attr_cols
Optional=None
elems_cols
Optional=None
namespaces
Optional=None
prefix
Optional=None
encoding str=utf-8
xml_declaration
bool=True
pretty_print
bool=True parser
str=1xml stylesheet
Union=None
compression
Union=infer
storage_options
Optional=None

DataFrame

module

hamilton.plugins.pandas_extensio


https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1048-L1139
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key

/0

saver params types

buf Union=None
columns
Optional=None
col_space
Union=None header
Optional=True
index
Optional=True
na_rep
Optional=NaN
formatters
Union=None
float_format
Optional=None
sparsify
Optional=True
index_names
Optional=True
justify str=None
max_rows
Optional=None
max_cols
Optional=None
show_dimensions
bool=False decimal
str=. bold_rows
bool=True classes
Union=None escape
Optional=True
notebook
Literal=False
border int=None
table_id
Optional=None
render_links
bool=False

encoding
Optional=utf-8

module
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/0

key

stata

feather

saver params types

path Union=None DataFrame
convert_dates
Optional=None
write_index
bool=True
byteorder
Optional=None
time_stamp
Optional=None
data_label
Optional=None
variable_labels
Optional=None
version Literal=114
convert_strl
Optional=None
compression
Union=infer
storage_options
Optional=None
value_labels
Optional=None

path Union dest DataFrame
Optional=None
compression
Literal=None
compression_level
Optional=None
chunksize
Optional=None

version Optional=2

module

hamilton.plugins.pandas_extensio

hamilton.plugins.pandas_extensio


https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1205-L1265
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1308-L1351
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key

feather

orc

excel

saver params

file Union=None

compression
Type=uncompressed

path Union engine
Literal=pyarrow

index
Optional=None

engine_kwargs
Optional=None

types

DataFrame

DataFrame

DataFrame

module

hamilton.plugins.polars_post_1_0_
LazyFrame

hamilton.plugins.pandas_extensio

hamilton.plugins.pandas_extensio


https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L412-L442
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1392-L1427
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1498-L1575
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key saver params types module

path Union
sheet_name
str=Sheetl na_rep
str= float_format
Optional=None
columns
Optional=None
header Union=True
index bool=True
index_label
Union=None startrow
int=0 startcol
int=0 engine
Optional=None
merge_cells
bool=True inf_rep
str=inf
freeze_panes
Optional=None
storage_options
Optional=None
engine_kwargs
Optional=None
mode Optional=w
if_sheet_exists
Optional=None
datetime_format

str=None

date_format
str=None

avro hamilton.plugins.polars_post_1_0_
file Union DataFrame LazyFrame

compression

Any=uncompressed

ndjson hamilton.plugins.polars_post_1_0_
file Union DataFrame LazyFrame


https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L477-L507
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L600-L623
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/0

key

database

spreadsheet

saver params types

table_name str DataFrame
connection Union
if_table_exists
Literal=fail
engine
Literal=sqlalchemy

DataFrame

LazyFrame

LazyFrame

module

hamilton.plugins.polars_post_1_0_

hamilton.plugins.polars_post_1_0_


https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L831-L868
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L674-L782
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/0

workbook Union
worksheet
Optional=None
position Union=A1l
table_style
Union=None
table_name
Optional=None
column_formats
Optional=None
dtype_formats
Optional=None
conditional_formats
Optional=None
header_format
Optional=None
column_totals
Union=None
column_widths
Union=None
row_totals
Union=None
row_heights
Union=None
sparklines
Optional=None
formulas
Optional=None
float_precision
int=3
include_header

bool=True autofilter

bool=True autofit
bool=False
hidden_columns
Union=None
hide_gridlines
bool=None
sheet_zoom
Optional=None
freeze_panes
Union=None
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key

png

dit

mlflow

saver params

path Union dpi
float=200 format
str=png metadata
Optional=None
bbox_inches
str=None
pad_inches
float=0.1 backend
Optional=None
papertype str=None
transparent
bool=None
bbox_extra_artists
Optional=None
pil_kwargs

Optional=None

pipeline Pipeline
table_name str
primary_key
Optional=None
write_disposition
Optional=None
columns
Optional=None
schema
Optional=None
loader_file_format
Optional=None

types

ConfusionMatrixDisplay

DetCurveDisplay

PrecisionRecallDisplay

PredictionErrorDisplay

RocCurveDisplay

DecisionBoundaryDisplay

LearningCurveDisplay

PartialDependenceDisplay

ValidationCurveDisplay

Figure

Iterable DataFrame
Table RecordBatch

Any

module

hamilton.plugins.sklearn_plot_ext

hamilton.plugins.dlt_extensions

hamilton.plugins.mlflow_extensiol


https://github.com/apache/hamilton/blob/main/hamilton/plugins/sklearn_plot_extensions.py#L64-L119
https://github.com/apache/hamilton/blob/main/hamilton/plugins/dlt_extensions.py#L98-L149
https://github.com/apache/hamilton/blob/main/hamilton/plugins/mlflow_extensions.py#L32-L110
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key saver params types module

path Union=model
register_as
Optional=None
flavor Union=None
run_id
Optional=None
mlflow_kwargs

Dict=None

Data Adapters

Reference for data adapter base classes:

class hamilton.io.data_adapters.DataLoader
Base class for data loaders. Data loaders are used to load data from a data source. Note
that they are inherently polymorphic - they declare what type(s) they can load to, and may
choose to load differently depending on the type they are loading to.

abstractmethod classmethod applicable_types() - Collection[Type]
Returns the types that this data loader can load to. These will be checked against the
desired type to determine whether this is a suitable loader for that type.

Note that a loader can load to multiple types. This is the function to override if you
want to add a new type to a data loader.

Note if you have any specific requirements for loading types (generic/whatnot), you
can override applies_to as well, but it will make it much harder to document/
determine what is happening.

Returns:

classmethod applies_to(type_: Type[Type]) - bool
Tells whether or not this data loader can load to a specific type. For instance, a CSV
data loader might be able to load to a dataframe, a json, but not an integer.

l.e. is the adapter type a subclass of the passed in type?
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This is a classmethod as it will be easier to validate, and we have to construct this,
delayed, with a factory.

Parameters:

type - Candidate type

Returns:

True if this data loader can load to the type, False
otherwise.

classmethod can_load() - bool
Returns whether this adapter can “load” data. Subclasses are meant to implement
this function to tell the framework what to do with them.

Returns:

classmethod can_save() - bool
Returns whether this adapter can “save” data. Subclasses are meant to implement
this function to tell the framework what to do with them.

Returns:

classmethod get_optional_arguments() - Dict[str, Type[Typell
Gives the optional arguments for the class. Note that this just uses the type hints
from the dataclass.

Returns:

The optional arguments for the class.

classmethod get_required_arguments() - Dict[str, Type[Type]]
Gives the required arguments for the class. Note that this just uses the type hints
from the dataclass.

Returns:

The required arguments for the class.

abstractmethod load_data(type_: Type[Typel) - Tuple[Type, Dict[str, Any]]
Loads the data from the data source. Note this uses the constructor parameters to
determine how to load the data.



568 1/0

Returns:

The type specified

abstractmethod classmethod name() - str
Returns the name of the data loader. This is used to register the data loader with the
load_from decorator.

Returns:

The name of the data loader.

class hamilton.io.data_adapters.DataSaver
Base class for data savers. Data savers are used to save data to a data source. Note that
they are inherently polymorphic - they declare what type(s) they can save from, and may
choose to save differently depending on the type they are saving from.

abstractmethod classmethod applicable_types() - Collection[Type]
Returns the types that this data loader can load to. These will be checked against the
desired type to determine whether this is a suitable loader for that type.

Note that a loader can load to multiple types. This is the function to override if you
want to add a new type to a data loader.

Note if you have any specific requirements for loading types (generic/whatnot), you
can override applies_to as well, but it will make it much harder to document/
determine what is happening.

Returns:

classmethod applies_to(type_: Type[Type]) - bool
Tells whether or not this data saver can ingest a specific type to save it.

l.e. is the adapter type a superclass of the passed in type?

This is a classmethod as it will be easier to validate, and we have to construct this,
delayed, with a factory.

Parameters:

type - Candidate type

Returns:
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True if this data saver can handle to the type, False
otherwise.

classmethod can_load() - bool
Returns whether this adapter can “load” data. Subclasses are meant to implement
this function to tell the framework what to do with them.

Returns:

classmethod can_save() - bool
Returns whether this adapter can “save” data. Subclasses are meant to implement
this function to tell the framework what to do with them.

Returns:

classmethod get_optional_arguments() - Dict[str, Type[Typell
Gives the optional arguments for the class. Note that this just uses the type hints
from the dataclass.

Returns:

The optional arguments for the class.

classmethod get_required_arguments() - Dict[str, Type[Typell
Gives the required arguments for the class. Note that this just uses the type hints
from the dataclass.

Returns:

The required arguments for the class.

abstractmethod classmethod name() - str
Returns the name of the data loader. This is used to register the data loader with the
load_from decorator.

Returns:

The name of the data loader.

abstractmethod save_data(data: Any) - Dict[str, Any]
Saves the data to the data source.
Note this uses the constructor parameters to determine how to save the data.
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Returns:

Any relevant metadata. This is up the the data saver, but
will Llikely include the URI, etc.. This is going to be
similar to the metadata returned by the data loader in
the loading tuple.

class hamilton.io.data_adapters.AdapterCommon
abstractmethod classmethod applicable_types() > Collection[Type]
Returns the types that this data loader can load to. These will be checked against the
desired type to determine whether this is a suitable loader for that type.

Note that a loader can load to multiple types. This is the function to override if you
want to add a new type to a data loader.

Note if you have any specific requirements for loading types (generic/whatnot), you
can override applies_to as well, but it will make it much harder to document/
determine what is happening.

Returns:

abstractmethod classmethod applies_to(type_: Type[Type]) - bool
Tells whether or not this adapter applies to the given type.

Note: you need to understand the edge direction to properly determine applicability.
For loading data, the loader type needs to be a subclass of the type being loaded into.
For saving data, the saver type needs to be a superclass of the type being passed in.

This is a classmethod as it will be easier to validate, and we have to construct this,
delayed, with a factory.

Parameters:

type - Candidate type

Returns:

True if this adapter can be used with that type, False
otherwise.

classmethod can_load() - bool
Returns whether this adapter can “load” data. Subclasses are meant to implement
this function to tell the framework what to do with them.
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Returns:

classmethod can_save() - bool
Returns whether this adapter can “save” data. Subclasses are meant to implement
this function to tell the framework what to do with them.

Returns:

classmethod get_optional_arguments() - Dict[str, Type[Typell
Gives the optional arguments for the class. Note that this just uses the type hints
from the dataclass.

Returns:

The optional arguments for the class.

classmethod get_required_arguments() - Dict[str, Type[Type]]
Gives the required arguments for the class. Note that this just uses the type hints
from the dataclass.

Returns:

The required arguments for the class.

abstractmethod classmethod name() > str
Returns the name of the data loader. This is used to register the data loader with the
load_from decorator.

Returns:

The name of the data loader.
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Dataflows

Here lies reference documentation for dataflows module functions that enable you to discover
and use community-contributed dataflows. See the ecosystem page for available dataflow
resources.

Reference

clear_storage()

hamilton.dataflows.clear_storage()
Clears all the data under DATAFLOW_FOLDER. By default its “~/.hamilton/dataflows".

copy()

hamilton.dataflows.copy(dataflow: ModuleType, destination_path: str, overwrite: bool = False,
renamed_module: str = None)
Copies a dataflow module to the passed in path.

from hamilton import dataflows

# dynamically pull and then copy

NAME_OF_DATAFLOW = dataflow.import_module("NAME_OF DATAFLOW",
"NAME_OF USER")

dataflow.copy(NAME_OF_DATAFLOW,
destination_path="PATH_TO_DIRECTORY")

# copy from the installed library

from hamilton.contrib.user .NAME_OF_USER import NAME_OF_DATAFLOW

dataflow.copy(NAME_OF_DATAFLOW,
destination_path="PATH_TO_DIRECTORY")
Parameters:

- dataflow - the module to copy.


file:///home/runner/work/hamilton/hamilton/docs/ecosystem/index.html
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- destination_path - the path to a directory to place the
module in.

- overwrite — whether to overwrite the destination. Default
is False and raise an error.

- renamed_module - whether to rename the copied
module. Default is None and will use the original name.

find()

hamilton.dataflows.find(query: str, version: str = None, user: str = None)
Searches for locally downloaded dataflows based on a query string.

Parameters:
- query - key words to search for.

- version - the version to inspect. “latest” will resolve to the
most recent commit, else pass a commit SHA.

- user - the github name of the user.

Returns:

list of tuples of (version, user, dataflow)

import_module()

hamilton.dataflows.import_module(dataflow: str, user: str = None, version: str = 'latest’, overwrite:
bool = False) » ModuleType
Pulls & imports dataflow code from github and returns a module.

from hamilton import dataflows, driver

# downloads into ~/.hamilton/dataflows and loads the module --
WARNING: ensure you know what code you're importing!

# NAME_OF _DATAFLOW = dataflow.import_module("NAME_OF _DATAFLOW") #
if using official dataflow

NAME_OF _DATAFLOW = dataflow.import_module("NAME_OF DATAFLOW",
"NAME_OF_USER")
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dr = (
driver.Builder()
.with_config({}) # replace with configuration as appropriate
.with_modules(NAME_OF DATAFLOW)
.build()

)

# execute the dataflow, specifying what you want back. Will
return a dictionary.
result = dr.execute(
[NAME_OF _DATAFLOW.FUNCTION_NAME, ...], # this specifies what
you want back
inputs={...} # pass in inputs as appropriate
)
Parameters:
- dataflow - the name of the dataflow.

- user — Optional. If none it assumes official.

- version - the version to get. “latest” will resolve to the
most recent commit. Otherwise pass a the commit SHA
you want to pull.

- overwrite - whether to overwrite the local path. Default is
False.
Returns:

a Module that you can then pass to Hamilton.

inspect()

Use this to get cursory information about a Apache Hamilton module.

class hamilton.dataflows.InspectResult(version, user, dataflow, python_dependencies,
configurations)

hamilton.dataflows.inspect(dataflow: str, user: str = None, version: str = 'latest’) - InspectResult
Inspects a dataflow for information.

This is a helper function to get information about a dataflow that exists locally. It does not
get more information because we don't want to assume we can import the module.
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from hamilton import dataflows

info = dataflows.inspect("text_summarization", "zilto")

Parameters:
- dataflow - the dataflow name.

- user - the github name of the user. None for DAGWorks
official.

- version - the version to inspect. “latest” will resolve to the
most recent commit, else pass a commit SHA.
Returns:

hamilton.dataflow.InspectResult ~ object that contains
version, user URL, dataflow URL, python dependencies,
configurations.

inspect_module()

Use this to get deep information about a Apache Hamilton module.

class hamilton.dataflows.InspectModuleResult(version, user, dataflow, python_dependencies,
configurations, possible_inputs, nodes, designated_outputs)

hamilton.dataflows.inspect_module(module: ModuleType) - InspectModuleResult
Inspects the import module for information.

This does more than inspect because the module has been loaded and thus we can put it

into a Hamilton driver and ask questions of it.

from hamilton.contrib.user.zilto import text_summarization
from hamilton import dataflows

info = dataflows.inspect_module(text_summarization)

Parameters:
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module - the module with Hamilton code to deeply
introspect.
Returns:

hamilton.dataflow.InspectModuleResult object.

install_dependencies_string()

hamilton.dataflows.install_dependencies_string(dataflow: str, user: str = None, version: str =
'latest’) > str
Returns a string for the user to install dependencies.

Parameters:
- dataflow - the name of the dataflow.
- user - the github name of the user.
- version - the version to inspect. “latest” will resolve to the
most recent commit, else pass a commit SHA.
Returns:

pip install string to use.

latest_commit()

hamilton.dataflows.latest_commit(dataflow: str, user: str = None) - str
Determines the latest commit for a dataflow.

This is useful to know if you want to pull the latest version of a dataflow.

Parameters:
- dataflow - the string name of the dataflow

- user — the name of the user. None if official.
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Returns:

the commit sha.

list()

hamilton.dataflows.list(version: str = 'latest’, user: str = None) - list
Lists dataflows locally downloaded based on commit_ish and user.

Parameters:

- version - the version to inspect. “latest” will resolve to the
most recent commit, else pass a commit SHA.

- user - the github name of the user.

Returns:

list of tuples of (version, user, dataflow)

pull_module()

hamilton.dataflows.pull_module(dataflow: str, user: str = None, version: str = 'latest’, overwrite:
bool = False)
Pulls a dataflow module.

Saves to hamilton.dataflow.USER_PATH. An import should just work right after doing this.
It performs the following:

1. Creates a URL to pull from github.

2. Pulls the code for the dataflow.

3. Save to the local location based on hamilton.dataflow.USER_PATH.

Parameters:
- dataflow - the dataflow name.

- user — the user’s github handle.
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- version — the commit version. “latest” will resolve to the
most recent commit, else pass a commit SHA.

- overwrite — whether to overwrite. Default is False.
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Telemetry

If you do not wish to participate in telemetry capture, one can opt-out with one of the following
methods:

1. Set it to false programmatically in your code before creating a Hamilton Driver:

from hamilton import telemetry
telemetry.disable_telemetry()

2.Setthe key telemetry_enabled to false in ~/hamilton.conf under the DEFAULT section:

[DEFAULT]
telemetry_enabled = False

3. Set HAMILTON_TELEMETRY_ENABLED=false as an environment variable. Either setting it for your
shell session:

export HAMILTON_TELEMETRY_ENABLED=false
or passing it as part of the run command:

HAMILTON_TELEMETRY_ENABLED=false python NAME_OF_MY_DRIVER.py
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ASF

Apache Software Foundation links.
- Foundation
- License
- Events
- Privacy
- Security
- Sponsorship
- Thanks

- Code of Conduct

Mailing Lists

Apache Hamilton uses mailing lists for project discussions, announcements, and community
engagement.

Users Mailing List

For general questions, discussions, and user support.
How to Subscribe

Send an empty email to users-subscribe@hamilton.apache.org. Use a subject line like “subscribe”
to avoid spam filters. You will receive a confirmation message with instructions to complete the
subscription process.

How to Unsubscribe

Send an empty message to users-unsubscribe@hamilton.apache.org from the same email address
used to subscribe.

How to Post


https://www.apache.org/
https://www.apache.org/licenses/
https://www.apache.org/events/current-event.html
https://privacy.apache.org/policies/privacy-policy-public.html
https://www.apache.org/security/
https://www.apache.org/foundation/sponsorship.html
https://www.apache.org/foundation/thanks.html
https://www.apache.org/foundation/policies/conduct.html
mailto:users-subscribe%40hamilton.apache.org
mailto:users-subscribe%40hamilton.apache.org
mailto:users-subscribe%40hamilton.apache.org
mailto:users-subscribe%40hamilton.apache.org
mailto:users-unsubscribe%40hamilton.apache.org
mailto:users-unsubscribe%40hamilton.apache.org
mailto:users-unsubscribe%40hamilton.apache.org
mailto:users-unsubscribe%40hamilton.apache.org
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Once subscribed, send messages to users@hamilton.apache.org
Archives

View users list archives

Dev Mailing List

For development discussions, design proposals, and contributing to Apache Hamilton.
How to Subscribe

Send an empty email to dev-subscribe@hamilton.apache.org. Use a subject line like “subscribe”
to avoid spam filters. You will receive a confirmation message with instructions to complete the
subscription process.

How to Unsubscribe

Send an empty message to dev-unsubscribe@hamilton.apache.org from the same email address
used to subscribe.

How to Post
Once subscribed, send messages to dev@hamilton.apache.org
Archives

View dev list archives


mailto:users%40hamilton.apache.org
mailto:users%40hamilton.apache.org
mailto:users%40hamilton.apache.org
mailto:users%40hamilton.apache.org
https://lists.apache.org/list.html?users@hamilton.apache.org
mailto:dev-subscribe%40hamilton.apache.org
mailto:dev-subscribe%40hamilton.apache.org
mailto:dev-subscribe%40hamilton.apache.org
mailto:dev-subscribe%40hamilton.apache.org
mailto:dev-unsubscribe%40hamilton.apache.org
mailto:dev-unsubscribe%40hamilton.apache.org
mailto:dev-unsubscribe%40hamilton.apache.org
mailto:dev-unsubscribe%40hamilton.apache.org
mailto:dev%40hamilton.apache.org
mailto:dev%40hamilton.apache.org
mailto:dev%40hamilton.apache.org
mailto:dev%40hamilton.apache.org
https://lists.apache.org/list.html?dev@hamilton.apache.org
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